References - 1. K. Kendig, Elementary Algebraic Geometry, Springer-Verlag, New York, 1977, Chapter II. - 2. _____, Algebra, Geometry, and algebraic geometry: Some interconnections, *American Mathematical Monthly* 90 (1983) 161–173. - 3. A. Seidenberg, Elements of the Theory of Algebraic Curves, Addison-Wesley, Reading, MA, 1968. ## The Snowplow Problem Revisited Xiao-peng Xu, University of Massachusetts, Amherst, 01003 A classic problem in elementary differential equations, commonly attributed to R. P. Agnew [*Differential Equations*, McGraw-Hill, 1942, pp. 30–32], is the following: One day it started snowing at a heavy and steady rate. A snowplow started out at noon, going 2 miles the first hour and 1 mile the second hour. What time did it start snowing? The problem is usually solved by setting t=0 at noon, setting up the relevant differential equation, finding its general solution and then using the conditions of the problem to eliminate all the arbitrary constants. This procedure involves a fair amount of algebra which, if not done carefully, can be quite tedious. There is, however, a quick and easy way that avoids most of this algebra. It goes as follows: Let t denote time, measured in hours, and let t=0 at 1:00 p.m. Let t_0 be the time it started snowing. Let y(t) denote the distance traveled by the snowplow, measured in miles. Let h(t) be the height of the snow at time t, so that $h(t_0)=0$. Let s denote the rate of the snowfall, measured in any suitable units. Then, since it was snowing at a steady rate, $h(t)=s(t-t_0)$. Assume that the width of the snowplow is one unit and let k be the amount of snow that the plow can remove per unit time. Then we have $$h(t)\frac{dy}{dt} = k$$ or $\frac{dy}{dt} = \frac{c}{t - t_0}$, where c = k/s. Now (and this is the trick) instead of finding the general solution of this differential equation, we note that $$2 = c \ln(t - t_0)|_{-1}^{0}$$ and $1 = c \ln(t - t_0)|_{0}^{1}$ whence $2 \ln[(t_0 - 1)/t_0] = \ln[t_0/(t_0 + 1)]$, and a very little algebra yields $t_0^2 + t_0 - 1 = 0$, so that $t_0 = (-1 - \sqrt{5})/2$. ## The Differentiability of Sin x David A. Rose, East Central University, Ada, OK 74820 That $\sin x$ is differentiable with derivative $\cos x$ implies that $\sin x$ has derivative 1 at x = 0, i.e., $$\lim_{x \to 0} \frac{\sin x}{x} = 1. \tag{1}$$