powers of the generator g, and so their product (—1)(—2) = 2 must be an even
power of g. In any case, we may select at least one of the quadratic factors
(x*+ 1), (x*+ 2), or (x? — 2) having the form (x* — g?¢)mod p. Let's say (x? + d)
has x,=g° as a root mod p, and suppose that p°|(xZ + d) so that x?+ d = p°c.
Now 2x, is invertible mod p, so we may set x, =x,— c(2x,)”'p”. Expansion
reveals that

witd=x2—2x,0(2%,)  pP+ A (2x,) P p*t+d

= p®c— pPc=0mod p’*!.

Repeat this device to increase the exponent until we construct a root mod p.

Combining the roots constructed for prime powers with the Chinese Remainder
Theorem gives us the required root for A x)mod m for each m, in spite of the fact
that f{x) has no integer root.

Question: Is there an example of a polynomial with these properties having degree
less than 9?

On a Theorem of Clay
H. Azad (hassanaz@kfupm.edu.sa) and A. Laradji (alaradji@dpc.klupm.edu.sa),
King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

In [1], Clay proved the surprising theorem that the multiplicative group C* is
isomorphic to its subgroup S', the unit circle. His proof relies on a deep structure
theorem of divisible abelian groups that can be found in [3] and in [5]. Clay’s result
is cited (without proof) in some standard undergraduate texts (e.g. Gallian [4, p.
121] and Nicholson [6, p. 148]). In this short note we give a much more accessible
and very elementary proof of this result, showing in particular that it may well be set
as an undergraduate exercise. For any set I, | 7| will denote the cardinality of 7. For
basic results on cardinal arithmetic we refer to any introductory text in set theory
([2], for example).

Proposition. There exists a group isomorphism f: (R,+)— (C,+) that extends
the identity map of Q.

Proof. Extend {1} to a basis & of R and a basis & of C as Q-vector spaces. We
have |[R|=1Q|-|%|, and therefore, since Q] <|R| and |Q|-|#| = max(|Q|,|. 2], we
obtain |#|=IR|. Similarly |C|=1Q|-|%], and so |C|=|%|. Now |C|=|R? =|R]| (for
any infinite cardinal «, @ = @), and hence |#|=|%|. Choose a bijection g: & = %
such that g(1) =1 and extend it to a @-isomorphism f: R — C. Clearly f is a group
isomorphism such that f{g) =g, Vg€ Q.

Remark. It is perhaps worth mentioning that the axiom of choice needed for the

theory of divisible abelian groups used in [1], is again required here, but at a clearly
less sophisticated level, for example for the existence of the Hamel basis above.
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Corollary. The multiplicative group C* is isomorphic to S*.

Proof. Using the maps z+— e*™*(z€ C) and r— e*""(r€R), it is clear that
C*=C/Z and S' =R /Z. On the other hand the map f in the proof above maps @
onto @, and hence Z onto Z. This induces an isomorphism C/Z=R/Z, as
required.
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Tangents without Calculus
Jorge Aardo (jaarao@benson.mckenna.edu),
Claremont McKenna College, Claremont, CA 91711

In pre-calculus courses we often teach our students about polynomial division,
and use the division algorithm in factoring polynomials. I would like to suggest
another interesting application of polynomial division.

Here’s the no-calculus rule for finding tangent lines to polynomials.

The line y=mx+ b is tangent to the graph of the polynomial p(x) at
x = a if and only if mx + b is the remainder of the quotient p(x)/(x — a)*.

For example, since
x2—2x +x+1=(x+2)(x—2)"+(5x—-7),

y=5x—7istangentto y=x>—2x*+x+1at x=2.

While this rule may not be as simple as the calculus method for finding tangent
lines, from a pre-calculus point of view it is not only elementary but also has a very
intuitive, geometric justification.

First let’'s answer the question: when is the x-axis tangent to the graph of a
polynomial? Let f(x) be a polynomial and let x=a be a root of f, then, as
suggested by Figure 1, the x-axis is tangent to the graph of f exactly when x = a is
(at least) a double root of f. Equivalently, (x — a)? divides f{x) without remainder.

The question of whether a line y=mx+ b is tangent to the graph of a
polynomial p(x) at x=a can be reduced to the previous case by setting flx) =
p(x) — (mx+ b). Now y=mx+ b is tangent to y = p(x) at x=a

© the x-axis is tangent to y= flx) at x=a
e (x— a)* divides f{x) without remainder
< mx + b is the remainder of the quotient p(x)/(x — a)*.
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