b+ —AC
bccos B = ————2'— :X22+y22—X|X2—y1y2—d.X2+dX1.

Summing these four equalities, with some minor rearrangements, gives

w =abcos A+ cdcosC + adcos D + bccos B
= [x{ + 2dx; — 2x1x0 + d* — 2x0d + x3] + [y + ¥3 — 2y1)2]

_ G+d) x)® n »ny?
—4[{_2—“2‘] +{3‘3}}

and this last expression equals 4x? since the midpoints have coordinates

M1=<x1+d &> and Mzz(’C2 yz).

2 2 272
We note in closing that if the vertices of the quadrilateral are located at A : (0, 2),
B:2n+4,2n+2), C:(4,0), and D : (0, 0), then the distance between the two

midpoints is x = n+/2, and hence can be made as large as desired, reflecting the fact
that a quadrilateral can be quite unlike a parallelogram.

Acknowledgment. Inspiration for this article came from listening to Bill Dunham deliver the
featured address on “Euler” at the Fall, 1999 meeting of the Ohio Section of the M.A.A.
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The Volume of a Tetrahedron
Cho Jinsok (jindol2 @snu.ac.kr) student, Seoul National University

There are many formulas for calculating the area of a triangle, including one that is
used when we know only the lengths of two sides and the angle between them. Like-
wise there are formulas for calculating the volume of a tetrahedron, but the common
ones require the coordinates of the four vertices. Suppose, instead, we are given only
the lengths of three edges having a common point and the measures of the three angles
between these edges.

Theorem. For a tetrahedron O ABC let the angles ZAOB, L/AOC, and ZBOC have
given values 61, 6,, and 05, and let the lengths of the edges OA, OB, and OC be a, b,
and c, respectively. Let 6 = w Then the volume of the tetrahedron is given by

1
V= gabc\/sine sin(@ — 6;) sin(@ — 6,) sin(f — 65). )
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Proof. Put the tetrahedron in Euclidean 3-space as pictured. Since the area of
AOAB is %ab sin#;, we only need to find the z-coordinate of the point C to calcu-

late V. Let «, B, and y be the angles that the vector OC makes with the positive x, y,
and z axes (the direction angles). Then we know

OC = c(cosa, cos B, cos )
and

cos’a 4+ cos®* B +cos’y = 1. 3)

Since the z-coordinate of C is ¢ - cosy = cﬂ — cos? o — cos? B (using (3)) and we
have chosen coordinates in such a way that ¢ = 6,, then the task that remains is to
express cos § in terms of the given data. For this, as suggested in the picture, we rotate
the point C about the z axis by the angle 7 /2 — 6; to construct the new point C’. For

sinf; —cosf

vectors in the xy plane, the matrix of this rotation is ] so the y-coordinate

cos 01 sin 0}
of C’ is c¢(cos 8 cos 6, + sind; cos B). By our choice of rotation, however, the angle
between OC’ and the positive y axis is 83, so the y-coordinate of C’ is ¢ - cos6s.
Equating these two expressions leads to

cos 03 — cos 8y cos 0,
= . 4
cos sin 6, @)

We are now able to use (3) and (4) to express cos y in terms of the given data. In fact,

cos’y =1 —cos’a —cos’ B

2
o cos 03 — cos 8y cos 0,
=sin“ 6, — ;
sin 6,

_ (sin 6, sin By + cos 63 — cos 6; cos B,)(sin b, sin; — cos B3 + cos f; cos 6)

sin® 6,
_ (cos(8; + 6,) — cosbB3)(cos(f; — 6,) — cosB3)

&)

sin? 6;
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To simplify further we use a trigonometric identity that can be found in various

sources:
cosx —cosy = —2sin (x—;y)sin (x;y)‘ ©6)

Combining (5) and (6) then yields

_ 24/sinBsin(0 — 6,) sin(f — 6,) sin(0 — 65)

cos y ;
sin 6,

(since 0 < 0; < m, sin 6 is positive).
Finally, the volume of the tetrahedron is given by

1/1 .
V= 3 <5ab s1n91) (c-cosy)

24/sin@ sin(6 — 6,) sin(6 — 6,) sin(@ — 63)
sin 91

1
= —abcsin 6
6acsm1

1
= gabc\/sine sin(@ — 6;) sin(@ — 6,) sin( — 65).

Ten into Eight Won’t Go?

Marc Brodie (College of St. Benedict, mbrodie @csbsju.edu), who does not get
all his news from television, found an item showing that the Minneapolis Star-
Tribune has an insufficient appreciation of the pigeonhole principle:

WRESTLING from C1
Ten Gophers
in top eight,
lowa holds
narrow lead
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