Using Seifert’s theorem, which I stated in class but did not prove, and Stokes’
theorem, we now know that

§6CF-Tds=0

for any smooth simple closed curve C.
Incidentally, George Stokes got the idea for his theorem from an 1850 letter
from Lord Kelvin [2], the founder of knot theory [1].
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Exploring Fibonacci Numbers Mod M
Jack Ryder, Kean College of New Jersey, Union, NJ 07083

Fibonacci numbers, commonly defined as the sequence {f(n)} with f(1) =1, f(2) =
1, and f(n)=f(n—1)+f(n—2) for n>2, are used to teach the concept of
recursion in mathematics and computer science courses. These numbers become
large quickly, but by computing the Fibonacci sequence modulo a natural number
m, we are able to keep the numbers being generated inside the interval [0, m — 1].
Thus we fix m and consider the generalized Fibonacci sequence mod m defined by

f(1)=a
f(2)=b (1)
f(n)y=f(n=1)+f(n—2)modm  forn>2

where the inputs a and b are chosen from 0,1,...,m — 1. For example, if m =10
and a =b =1, then the sequence begins

1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5, ... .

Is this sequence eventually periodic? If so, what is the cycle length? Must such a
sequence cycle back to the initial value? Do all the numbers 0,...,m — 1 appear?
Do they appear equally often? How do the answers to these questions depend on
m, a, and b? 1 was originally drawn to these questions when searching for an
efficient (pseudo)random number generator.

A natural way to visualize the sequence {f(n)} is to plot its graph, the sequence
of points (n, f(n)), as in Figure 1. But some features will be more apparent in a
plot of the Fibonacci walk, the sequence of points P, = (f(n), f(n + 1)). This is the
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Figure 1. The graph of f using the data m =10,a=1,b=3.

analogue for the discrete second-order difference equation (1) of the phase-plane
plot of a solution to a second-order differential equation. The sequence {f(n)} is
eventually periodic if and only if the Fibonacci walk revisits one of its points,
because the ordered pair (f(n), f(n+ 1)) uniquely determines the rest of the
Fibonacci sequence. Of course, since the Fibonacci walk takes place on an m X m
grid, points must be revisited and, in fact, cycle lengths have an upper bound of
m?. Figure 2 illustrates the Fibonacci walk for m = 10, a =1, and b = 3, a cycle of
length 12.

The Fibonacci sequence mod 7 has been studied, and some of the questions I
raised have been solved in the literature [see D. D. Wall, Fibonacci series modulo
m, American Mathematical Monthly 67 (1960) 525-532]. For example, it is easy to
prove that each sequence is a single cycle, that is, the Fibonacci walk returns to the
starting point P, = (a, b). To see this, assume P, = P, for some s #¢ and s is the
smallest positive integer for which such an equation holds. If s> 1, then
the formula f(n—1)=f(n+1)—f(n) for n>1, applied to n=s and to n=t¢,
allows us to deduce that P,_; = P,_,, a contradiction; so it must be that s = 1.

The m X m grid is thus partitioned into orbits, each the cyclic Fibonacci walk
generated by taking one of its points (a, b) as initial point P,. A little experimenta-
tion shows that the cycle generated by P, =(0,1) plays a special role in the
partition. In fact, this is the longest of the cycles and its length is divisible by the
lengths of all other cycles! For if {u,} denotes the sequence 0,1,1,2,...(mod m),
with cycle length k, and {f(n)} is the sequence a,b,a + b,a + 2b,...(mod m), with
cycle length £, then

f(n)=au,_, +bu, for n > 1.

It follows that f(n + k) =f(n), so hlk.
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Figure 2. The Fibonacci walk for the sequence 1,3,4,7,1,8,9,7,6,3,9,2,1,3,... .

The many questions to consider about the cycle lengths and orbit structures are
a fertile source of projects requiring students to formulate and test conjectures.

o

Cubic Splines from Simpson’s Rule
Nishan Krikorian and Mark Ramras, Northeastern University, Boston, MA 02155

Suppose at the points xg, x,...,x, we are given data values yg, y;,...,y, and
slopes sy, 81, ..,5,. Then a cubic Hermite interpolant is a C' piecewise cubic curve
y = C(x) that interpolates these data values and slopes. In other words, on the data
interval [x;, x;,;] C(x) is the unique cubic polynomial such that C(x,) =y,
C'(x;) =5;, C(x;41) =yi41, and C'(x;,{) =s;,,. It is easy to write down an explicit
formula for C(x) in each interval. Now suppose the slopes sg,s;,...,s, are not
given but are allowed to be chosen arbitrarily. It is a surprising fact that there is a
choice of s, s;,...,5, that produces a cubic Hermite interpolant that is also CZ.
Such an interpolant is called a cubic spline. It is shown in standard textbooks in
numerical analysis that, for this to happen, s, s;,..., s, must satisfy the tridiagonal
linear system

[ 1 0 5o
hy 2(hy+hy) hy 5

h, 2(hy+hy) hy 55

hn—l 2(hn—2+hn—1) hn-—2 S
0 1 s
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