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Heron’s remarkable formula, K = /s(s — a)(s — b)(s — c), for the area K of a
triangle with side lengths a, b, and ¢, and semiperimeter s = (a + b + ¢)/2, can be
proved by a number of methods. Algebraic, geometric, trigonometric and function-
theoretic proofs can be found in [1], [2], [4], [5], [6], [7], [9], [10], [12], and [14].
The purpose of this Capsule is to use “proofs without words” to establish two lemmas
(which are of interest in their own right) that reduce the proof of Heron’s formula
to elementary algebra. It is based on the proof found in [2] (which reappears in [4]
and [10]).

Let AABC be a triangle with sides a, b, c, as in Figure 1(a), and bisect each angle
to locate the center of the incircle (as did Heron). Extending an inradius (length r) to
each side now partitions the triangle into six smaller right triangles, with side lengths
as indicated in Figure 1(b).
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Figure 1.

Note that the semiperimeter satisfies
s=x+y+z=x+a=y+b=z+c (1)

We now prove (without words) the two lemmas from which Heron’s formula readily
follows.

Lemma 1. The area K of a triangle is equal to the product of its inradius and
semiperimeter.

Proof.

Figure2. K =r(x +y+2z) =rs.
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For another proof without words of Lemma 1, see [8].
Lemma2. Ifa, B andy are any positive angles such that o + B + vy = 7 /2, then

tanotan f +tan ftany +tany tana = 1.

Proof.
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Figure 3. tanatan 8 +tan Stany + tany tana = 1.

Theorem 1 (Heron’s Formula). The area K of a triangle with sides of length a,
b, and c is given by

K =+/s(s —a)(s —b)(s —¢)
where s = (a + b +c¢)/2.
Proof. Applying Lemma 2 to the angles labeled «, 8, and y in Figure 1(b) yields

1 =tano tan B + tan B tan y + tan y tan o,
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where the last step follows from Lemma 1. Invoking (1) yields
K? =sxyz=s(s —a)(s —b)(s —¢),
which completes the proof.

We conclude with a comment and a challenge. A quadrilateral is called cyclic
if it possesses a circumscribing circle. If the side lengths of a cyclic quadrilat-
eral ABCD are a, b, c, and d, then Brahmagupta’s formula for its area is K =
V(s —a)(s —b)(s —c)(s —d) [3, 13], where s = (a + b + ¢ + d)/2 again denotes
the semiperimeter (when d = 0, Brahmagupta’s formula reduces to Heron’s formula).
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If ABCD also has an incircle, then K = +/abcd [11]. We challenge the reader to
find appropriate generalizations of the lemmas in this Capsule (and proofs, perhaps
without words) for these expressions.
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A Property of Quadrilaterals
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What if you were to draw a quadrilateral that was quite unlike a parallelogram?
In an effort to disrupt the parallelism of pairs of opposite sides, you might construct
the opposite interior angles to be as different as possible, or, equivalently, have the
diagonals most clearly not bisect each other. The diagonals of a quadrilateral play a key
role in many associated properties, especially with cyclic quadrilaterals, ones whose
vertices lie on a circle [1]. For instance, Ptolemy’s Theorem tells us that the product
of the lengths of the diagonals of a cyclic quadrilateral equals the sum of the products
of the lengths of the pairs of opposite sides. Cyclic quadrilaterals are also noteworthy
because those are the ones of maximum area formed from four given sides. But even
for an arbitrary quadrilateral, there is a remarkable relationship (originally proved by
Euler) between the diagonals and the four sides. If we are given a convex quadrilateral
ABCD, as shown in the figure, and a, b, ¢, d, are the lengths of the four sides, then
the sum of the squares of these sides is related to the lengths of the two diagonals by

P+ +d>=AC +BD +42%,
where x is the length of the segment connecting the midpoints of the two diagonals.

This 4x? term can conveniently be thought of as measuring how far an ordinary quadri-
lateral differs from being a parallelogram.
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