2 b—a at+b a’ + b*
+1<JZB<Inb_lna< 5= < 5 (0<a<b), (4

1
a b
relating the harmonic, geometric, logarithmic, arithmetic, and root-mean-square

means.
For a rigorous proof of (1), observe that

x/2 _ ,—x/2 2
coshx—lz(%) >0 for x>0.

Therefore,

1

2

< 1< coshx for x>0,
cosh’x

and (1) follows by integrating the preceding inequality from x =0 to x = ¢. The
other inequalities of (3) are obvious.

Trees and Tennis Rankings
Curtis Cooper, Central Missouri State University, Warrensburg, MO

Everyone is familiar with the usual kind of “elimination” tennis tournament in
which losers drop out and winners continue to play until one undefeated player
remains. Such a tournament is nicely described by a tree whose vertices 1,2, ..., n
represent the n players and whose edges represent the matches that were played—
the direction of each edge pointing toward the loser. In the tournament of Figure 1,
for example, player 4 won by beating player 6 (who beat 11 and 1), player 10, and
player 3 (who beat 8, 2, and 5). In addition, player 8 beat player 9 (who beat 7 and
12).

Figure 1.

Suppose we wanted to rank the players of this tournament, subject to the rule:
for each edge of T, player i precedes player j if and only if i beats j. There is clearly no
unique way to do so since T does not contain enough information for a full account
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of the players’ relative strengths. Indeed, although 4 (the root of tree T') must begin
the list, the next member of the ranking could be 6, 10, or 3. Therefore, the general
question to be asked is:

How many rankings can be generated by a given rooted (directed) tree?

Let us first show that for the tournament in Figure 1, the answer is 158400. The
analysis of the general case is simple and pretty.

a=6 b=10
®
T,
11 1
Ta
T(‘
Figure 2a.

) —O)——O>—)—O—O—O—0O0—0O

O—O—O0—0O0—0O0—B—0O0)—0O—~WW—~0—0

Figure 2b.

Let (Figure 2a) a, b,c be the players who lost to 4. Then a, b, ¢ are the roots of
subtrees T,,T,, T, of T. Knowing the number of rankings R(T,), R(T,), R(T,) for
these subtrees wi'l enable us to compute the number of rankings R(T) for T itself.

There are (3 1; 7) = #}7' ways to string 11 beads using 3 amber, 1 blue,
and 7 crimson beads. Assume that these colored beads are precisely the numbered
vertices of T,, T, T.. Then for any particular color arrangement on the string, there
are respective R(T,), R(T,), R(T,) rankings for each color. (Figure 2b depicts one
possible color arrangement and one possible ranking for that given color arrange-
ment.) Thus,

11!
3

Clearly, R(T,) =2 and R(T,) = 1. To obtain R(T.), we can invoke the preceding
argument, applied to subtrees Ty, T,, T of T,. This yields

R(T) = X R(T,) X R(T,) X R(T.).

___6
R(T.)= grorp X2 X 1% 1.

All together, we obtain

_m 6! _
R(T)—mx2xlx(mx2xlxl)—158400.
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Turning now to the general case, we assume that the tournament-representing
tree T can be arranged so that the root r occurs by itself at the top, in “level 0,” of
the tree (Figure 3). Let the players w,,w,, . . ., w, who lost to winner r be placed (in
any order) in level 1 of the tree.

level 0

level |

wy wy Wi
Figure 3.

Each vertex w; is the root of a subtree T, of T; each T, represents a sub-
tournament, the rankmg of whose players prov1des us w1th a problem that is
identical to the kind of problem we started with. Let us show that, if we can solve
the problem for the subtrees T, we can succeed with T itself.

Every ranking for T has a place for each of the n players and, because the first
position must go to winner r, our freedom extends only through the remaining n — 1
positions. We don’t care how the vertices of the various subtrees get interlaced, so
long as the vertices of each T,,, considered alone, satisfy “i before j means i beat j.”
Consequently, a ranking for T is constructed by the double procedure:

(1) For each i, select | T, | places among the n — 1 open positions for the vertices
of T,

) Enter in these places the |T,| vertices of T, in any acceptable R(T,,)
ranked order. '

Practically by definition, the number of ways of achieving (1) is the multinomial

coefficient
n—1 _ (n— l)!
|TW|||TW2| e |ka| |Tw,|'|Twz|' U |TwA|' '

And for each of these partitions, the number of ways of doing (2) is R(T )X
R(T,) X -+ X R(T,,). Therefore, the total number of rankings for T is glven by
the recurrence relation

n— 1!
R(T) = |TW||!|;W2|! . ) |ka|! .R(TW|)R(TW2) e R(TWA )’

with the obvious initial value R(T) =1 for |T| = 1.
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