[sin 6sin"(m0) dO and |[cos 6 sin”(m6) d6 which Grant tackles using integration
by parts. (Incidentally, checking the example above and a few others by differenti-
ation may prompt some to notice the forms that appear as antiderivatives and
thereby to sense the possibility of yet another method: undetermined coefficients.)

[¢]

A Circular Argument
Fred Richman, Florida Atlantic University, Boca Raton, FL 33431-0991

Sketch of the circle. The first interesting limit that the student of calculus is
exposed to is often

sin x

lim
x—0 X

- 1. (*)

This limit has received some attention recently, see [5], [6], [9] and [13]. It is not
usually recognized that the standard proof is circular, as was suggested in [13] and
denied in [9). Archimedes proved a variant of (*) in order to show that the area of
a circle is equal to the area of a right triangle whose perpendicular sides are the
radius and the circumference of the circle. By the definition of 7, the circumfer-
ence of a circle is 277, so his theorem establishes the area formula 2. Despite
this dependence of the area formula on (*), the area formula is the basis for the
argument used in most calculus texts to prove (*); see [3], [7], [10], [11], [12].

The usual proof. The standard argument for (*) hinges on the inequalities
sin x <x <tan x, (%%)

from which () readily follows. The usual proof of (*#) considers an arc AB of
length x on the circle of radius one with center at O, and the point B’ on the
extension of OB such that 4B’ is perpendicular to OA. The triangle OAB is
contained in the circular sector OAB which is contained in the triangle OAB'.
Moreover

(1) the area of the triangle OAB is (sin x) /2,
(2) the area of the circular sector OAB is x/2,
(3) the area of the triangle OAB’ is (tan x) /2.

Statements (1) and (3) are clearly true; Statement (2) is true because the area of
the sector is to the area 7 of the circle as the length x of the arc 4B is to the
circumference 27 of the circle.

What’s wrong with this proof? The problem lies in how we know that the area of
the circle is 7. The answer that we learned it in elementary school is not good
enough. The fact is that to prove that the area of the circle is 7, we have to invoke
(=) in some form; for example, in the form of the inequalities (**).

Archimedes’ proof that the area of a circle is wr2. Archimedes was perhaps the
first to prove that the area of a circle of radius r is 772. Euclid had shown earlier
[4; XII.2] that the area of a circle is proportional to r?. Archimedes inscribes and
circumscribes the circle with regular n-sided polygons. The length of a side of the
inscribed polygon is, in our terms, 2sin 7 /n, the length of a side of the circum-
scribed polygon is 2tan 7 /n, and 27 /n is the length of the circular arc between
adjacent points of contact of the circle with either polygon.
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Archimedes argues that 2sin/n <2 /n because the shortest distance be-
tween two points is a straight line. This principle is intuitively clear, despite the
fact that Euclid felt it necessary to prove that any side of a triangle was shorter
than the sum of the other two [4, 1.20]. To prove that 27 /n < 2tan 7 /n Archimedes
invokes the following more complicated principle [2, p. 145]:

(=) If two plane curves C and D with the same endpoints are concave in the
same direction, and C is included between D and the straight line
joining the endpoints, then the length of C is less than the length D.

This is not an implausible principle—I find it rather attractive. Still, it doesn’t have
the immediacy of “the shortest distance between two points is a straight line,” and
I am not sure that it is easier to accept than () itself.

Principle (##x) is applied with C the circular arc between two adjacent points
of contact of the circumscribed polygon with the circle, and D the polygonal path
consisting of the two adjacent halves of the sides of the circumscribed polygon that
touch the circle at these points. Thus Archimedes proves () in order to show that
the area of a circle is wr?. He needs (#%) to show that the lengths of the
perimeters of the polygons approximate the length of the circumference of the
circle.

Related proofs. In the proof of (%) in [8, Chap. 10, Sec. 2], Johnson and
Kiokemeister tacitly assume that if 4 and B are points on a circle, P is a point
outside the circle, and P4 and PB are tangent to the circle, then the length of the
arc from A to B is less than the sum of the lengths of P4 and PB. So their proof
is like that of Archimedes—and is not circular—but they do not justify this step.

In [9] Rose shows that () is equivalent to the validity of the area formula sr/2
for a circular sector of radius r and arc length s. Nevertheless, he claims that the
standard proof of () “need not involve circular reasoning since the sector area
formula can be obtained geometrically.” Indeed Archimedes obtained the formula
geometrically, but he first had to establish (*#); the standard proof uses the area
formula to show (*), completing the circle. The alternative is to assume (*) by
defining arc length to be the supremum of the lengths of inscribed polygonal paths.

True by definition? Ultimately the problem may be that () is true by definition,
as suggested by Gillman in [6]: “the theorem on the limit (sin o)/« in its natural
setting as essentially just the definition of the circumference of a circle.” The idea
underlying the definition of arc length is that small chords approximate small arcs,
so polygonal paths can be used to approximate curves. There is no explanatory
value in proving (*) because (*) is presupposed in the definition of arc length. The
best we can do is provide an informal motivation for (*). Drawing a few isosceles
triangles OAA’ on a fixed base AA’, with the angle at O equal to 2x getting
smaller and smaller, might convince a student that the length 2rx of the circular
arc AA', with center at O, approaches the length 27 sin x of the line 4A4'. Getting
across an intuitive. feeling for the idea that small arcs are approximately linear is
worthwhile in any case: that idea, after all, is the basis for the notion of a
derivative.

An ingenious solution. Apostol [1, page 102] circumvents circularity by using area
rather than arc length to define the radian measure of an angle. He does not
mention the problem of circularity explicitly; instead he comments that he has on
hand a general notion of area via the definite integral, but not yet a general notion
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of arc length. The measure of an angle is defined to be twice the area of the
circular sector it subtends, divided by the square of the radius. Then (=) follows
immediately from the inclusion of the areas because x/2 is defined to be the area
of the sector. Later, when arc length is defined as the limit of the lengths of
polygonal approximations, it can be shown that this definition of the measure of an
angle agrees with the standard one that uses arc length.

Although Apostol’s solution is elegant, the use of a nonstandard definition of
angle measure is a serious drawback in a calculus course. Nevertheless, a case can
be made that plane area is a more accessible concept than arc length, and so
provides a better way to measure angles. Area is readily bounded by polygons from
above and below; arc length, absent a principle like (*#x), is bounded by
polygonal lines only from below. If a circle can be put between two polygons, then
we can be confident that the area of the circle—whatever it might be—Ilies
between the areas of those two polygons. But why couldn’t the circumference of a
circle be greater than the supremum of the perimeters of its inscribed polygons?

Recap. The usual proof of () uses the area formula to prove (#*). The classical
proof of the area formula uses (*x), which is established by appeal to the
unfamiliar, and not quite obvious principle (##%). The modern alternative to
postulating (##%) is to define arc length as the supremum of the lengths of
polygonal approximations, but this amounts to postulating ().

There are various ways out.

- Continue being circular. After all, a proof is just a completely convincing
argument. The students accept the area formula, so why not use it?

« Use Archimedes’ (=), explicitly or tacitly. Maybe it’s obvious—Johnson and
Kiokemeister evidently thought that it was.

- Postulate a suitable form of (). In the form of the definition of arc length, this
is the current view of a logical development. Moreover Gillman says that
deriving the area formula from this “is what so pleased the students.”

« Define angle measure using area, as Apostol does, thus postponing the whole
question of arc length.
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