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The purpose of this note is to illustrate, via two numerical experiments, the great
disparity that may exist between theoretical and computational results in even the
most primitive of iterative systems. Consider these functions from [0, 1] to [0, 1]:

1) g(x)=2x(mod1), ie. g(x) is the fractional part of 2x.
2) Wx)=x+1/2if0<x<1/2, (x)=21-x)if1/2<x<1.
(See Figure 1)
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Experiment 1 is to write and execute a computer program that generates, for
arbitrary x €[0,1], 100 terms of the sequence x,=x, x,=g(x,_;) for n>1.
Experiment 2 is to do the same thing for 4. For example, if x = 2/3, the sequence
for g should be 2/3, 1/3, 2/3, 1/3,... and the sequence for 4 should be 2/3,
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2/3,2/3,. . However, the computer output may be surprising—try these experi-
ments before reading further!

Theory—Where are the periodic orbits? “Dynamical systems” may be defined as
the study of iterations of functions f: S — §, where S is some set. For any x € S,
the orbit of x is defined to be the sequence x,=x, x, =f(x,_,) for n > 1. Orbits
may behave with various degrees of regularity or irregularity; the central problem
of dynamical systems is to classify this behavior. Periodic orbits are of particular
interest. The orbit of x is said to be n-periodic if x,=x, but x,#x, for
k=1,2,...,n— 1. If some term of the orbit of x has an n-periodic orbit, then the
orbit of x is said to be eventually n-periodic. If the value of n is unspecified, we
refer simply to “periodic” or “eventually periodic” orbits.

Let us examine the orbits relative to g. It is easy to see that each orbit consists
entirely of rationals or entirely of irrationals. Furthermore, the eventually periodic
orbits are precisely the rational ones. To prove this, first note that if x is a rational
of form p/r, then all terms of the orbit of x have form q/r (not necessarily in
lowest terms). Since there are only r + 1 such rationals in [0, 1], there must be
some repetition, and the result follows directly. Conversely, if x has an eventually
n-periodic orbit then some term must be a root of g”(y)—y =0, where g”"
denotes the n-fold composition of g with itself. But g"(y) —y is piecewise linear
with integer coefficients and so has rational roots.

Now, if x is a rational of the form p/2%q, k > 1, with g odd then g(x) has the
form r/2%" g, i.e., g cancels twos from denominators. This suggests that it may be
illuminating to look at the orbits relative to g in binary notation. Recall that every
number in [0,1] can be represented in the form .B,B,B;...(=B,/2+B,/4+
B;/8 + +-+), where the B’s are in {0, 1}. This representation is unique except for
the usual stipulation about infinite strings of 1’s. We have then g(.8,8,8;...) =
.B,B5 ..., and this fact renders the dynamics of the orbits transparent. In particu-
lar, the orbit of x will be eventually periodic precisely when x =
Bi--BiBis1 - - - Bisn (The overline indicates infinite repetition of the block.)
These are, again, just the rationals. The points with n-periodic orbits are those
with binary representations of form .8, 8, ... B,, except when the overlined block
itself consists of a repeated sub-block. For example, the orbit of x =.100...0
(length n) is n-periodic. The reader may verify that x =2""! /(2" — 1).

We now turn to our second example, 4. This is slightly more subtle and is
included lest the reader think that the numerical pathology of g is due entirely to
its discontinuity. Details are left as exercises.

Exercise 1. Prove that x has an eventually periodic orbit relative to the function
h if and only if x is rational. Hint: if x has form p /g, then all terms in the orbit of
x can be written in the form r/2gq.

Exercise 2. Given an arbitrary positive integer n, find a point x with an n-peri-
odic orbit relative to 4. Hint: the action of 4 in binary is £(.8,8,B5...) = .18,B;...
if B,=0, and A(BB,B;...)= .B4B4... if B,=1. Here B;=1 if B, =0 and
B; =0 if B, =1. Using this, construct an x for which x,,..., x,_, have leading
digit 1 and x,_, has leading digit 0. The cases n even and n odd should be
examined separately. (The expert will recognize that the existence of n-periodic
orbits for all » is guaranteed by Sarkovskii’s theorem. However, this theorem does
not tell us how to get them explicitly. See [Robert L. Devaney, An Introduction to
Chaotic Dynamical Systems, 2nd ed., Addison-Wesley, Menlo Park, CA, 1989] for a
discussion.)
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Computation—Why does the computer lie? The reader will have observed that
no matter what x is, the computer output soon becomes ---0,0,0,--- for g and
-++0,1/2,1,0,1/2,1--- for h. What has happened to all the other orbits? The
answer lies in the fact that virtually all computers do arithmetic in binary, and so
the only numbers in [0, 1] that can be represented exactly are those of the form
p/2%, 0 <p <2k with some upper bound on k depending on the type of com-
puter. Since g (p/2¥) always has the form r/2¥~1 0 <r <2*~! after at most k
iterations the computed result will be 0 repeated forever. Now consider the action
of h on p/2* 1t is easily verified that if 1/2<p/2% <1, then g(p/2%) is
expressible in the form r/2%~!, 0 <r < 2%, Since no two successive terms of any
orbit of 4 lie in [0,1/2), it follows that at least every second iteration of 4 results
in a cancellation of a 2 from the denominator. Once again, the computer output
will soon be 0, followed by infinite repetition of 1/2, 1, 0.

A glimpse of chaos. There is no universally agreed-upon definition of a chaotic
system. Following Devaney, we say that a function f: [0,1] —[0,1] has chaotic
dynamics if these three conditions are satisfied:

i) For every x €[0,1], there is a y, arbitrarily close to x, for which the orbits of x
and y eventually diverge by some preassigned distance. Precisely, there is
a 8 > 0 such that for every x € [0, 1] and every € > 0, there exist y €[0,1] and a
positive integer m for which |x —y|<e and |x,, —y,|> 8. This property is
called sensitive dependence on initial conditions.
ii) The set of points lying on periodic orbits is dense. (A set D <[0,1] is dense if
for every x € [0, 1] and every € > 0, there is a point d € D such that [x — d| <e).
iii) There is a dense orbit.

Exercise 3. Both g and & have chaotic dynamics. Hint: use binary notation. The
points x=.3,B8,B; *--and y=.b,b,b; ---are close if B,=b, for i=1,2,...,n;
the larger » is, the closer they are. The proof for g is straightforward. The proof
for & involves some more delicate manipulation.

What to do with a calculator. Some hand calculators use a binary-coded decimal
system and perform decimal arithmetic exactly. The user of such a calculator may
enjoy examining the functions

3) g(x)=10x (mod 1).

Hh(x)=x+1/10if 0<x <9/10, A(x) =101 —x) if 9/10 <x < 1.
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