contradiction. It is not hard to extend this proof to arbitrary roots of arbitrary
positive integers.

If n and k are integers greater than one, and n is not the kth power of an
integer, then n'/* is irrational.

Suppose n'/* is rational. Then n'/* is rational for each positive integer i, and so

there exists a sequence of positive integers g, such that each a;n'/* is an integer.
Then a = a,a, - - - a,_, is a positive integer, and an’/* is integral for 1 < i < k — 1.
Let b be the smallest positive integer such that bn’/* is an integer for 1 < i < k — 1.
Since n is not a kth power, there is an integer m such that m < n'/* < m + 1. Let
¢ = bn'/¥ — bm. Then c is a positive integer less than b. But for 1 < i < k — 2,

cn'/k = pptitV/k — ppilkm
is an integer. And for i =k — 1,

en*=D/k = pp — pptk =N/
is an integer. This contradicts the definition of b, and completes the proof.

The proofs usually given for this result make some use of the Fundamental
Theorem of Arithmetic, which may require too much time to explain (let alone to
prove) in, say, a precalculus course. As Professor Niven observed, the fact that this
proof assumes the well-ordering principle has never been seen to bother a student.

o

The Derivatives of Arcsec x, Arctanx, and Tanx
Norman Schaumberger, Bronx Community College, Bronx, NY

Beginnin% calculus students know that the shaded sector in Figure 1 has area equal
to (1/2)r". Here we show how different expressions for § can yield formulas for the

above titled derivatives.
A\r
o r

Figure 1.
To obtain the formula for d(arcsec x)/dx, let (Figure 2) BE and CD be arcs of

circles with center O and radii x and x + Ax, respectively. Then,

area(sector OBE ) < area(triangle OBD ) < area(sector OCD ). (*)
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D(1,\/(x +Ax)* = 1)
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E
B(l,\/xz— 1)
(]
d
0 4(1,0)

Figure 2.

Since
6 = arcsec(x + Ax) — arcsecx,

it follows from (*) that

x?[ arcsec(x + Ax) ~ arcsecx] <y(x + Ax)? =1 —yx?—1

< x + Ax)’[arcsec(x + Ax) — arcsec x].

Thus,
\/ (x + AX) -1 —Vx - arcsec(x + Ax) — arcsec x
(Ax)(x + Ax)?
Vix +ax)?—1 —x2 1
(Bx)(x%) ’
or
2% + Ax arcsec(x + Ax) — arcsec x
A
(x+Ax)2[\/(x+Ax)2— 1 +yx?—1 ] 8
< 2x + Ax _
xz[\/(x +Ax)> =1 +yx* =1 ]
Consequently,
d(arcsec x) . arcsec(x + Ax) — arcsecx 1
———— = lim = (1)

dx T Ax—0 Ax s 1 '

Using (1), it is easy to obtain the derivatives of the other inverse trigonometric
functions. For example, d(arctan x)/dx = d(arcsecyx® + 1)/dx = 1/(1 + x?).
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D(1,x + Ax) D(1, tan(x + Ax))
C C
£ E
B(1,x) B(l, tan x)
() x + Ax
] ) )
0 A(1,0) 0 A(1,0)
Figure 3a. Figure 3b.

To obtain the formula for d(arctanx)/dx, let radius OB =1 + x> and radius

oC = \/1 +(x+ Ax)2 in Figure 3a. Then

6 = arctan(x + Ax) — arctan x

and (*) yields

(1+ xz)[arctan(x + Ax) — arctanx] < Ax <[1 +(x+ Ax)z] . [arctan(x + Ax) — arctanx].

Therefore,
1 arctan(x + Ax) — arctanx < 1
1+ (x + Ax)? Ax 1+ x2’
and we have
d(arctan x) . arctan(x + Ax) — arctanx 1
T dx axso Ax T @

Now it is a simple matter to obtain the derivatives of the trigonometric functions by
way of formulas (1) or (2). For instance, take %1 = tanx so that x = arctan y. Then
dx/dy=1/(1+ y* and dy/dx =1 + y* = sec’x

To obtain the formula for d(tanx)/dx, let radius OB =secx and radius OC
= sec(x + Ax) in Figure 3b. Then § = Ax and (*) yields

(sec’x)(Ax) < tan(x + Ax) — tanx <[se02(x + Ax)](Ax).

Thus,
d(tanx) . tan(x + Ax) — tanx
= lim
dx Ax—0 Ax

= seczx .
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