games. Equating these expressions for the total number of games yields

t"—1
2 n—1_
I+t+t°+ +t =TT (1)

Although we derived (1) by considering only integral ¢ > 1 and positive integral n,
it forms an algebraic identity valid for all complex ¢ # 1. Replacing n with n + 1
gives the more standard form

t"+1 -1

T+t+e2+ -+t = ———
t—1

valid for all whole numbers n.

Weighted Means of Order r and Related Inequalities: An Elementary
Approach

Frangois Dubeau, Collége militaire royal de Saint-Jean, Saint-Jean-sur-Richelieu,
Québec, Canada, JOJ 1RO

The aim of this note is to present the properties of weighted means of order r
using elementary techniques of analysis. In particular the increasing property of
the weighted mean of order r, as a function of r, is proved using a more
elementary technique than the standard proof.

Let r be any nonzero real number and let us consider the function ¢(x)=x"
defined on the interval I = (0, +). Using the mean value theorem, for any fixed
strictly positive real number a, we have

x"=a"+r& N (x—a) (1)

where £, is between x and a. It follows that ¢(x)=x" is strictly increasing
(decreasing) if »> 0 (r <0).
Using the Taylor expansion of order 1, we have

(x—a)

5 2)

x'=a"+ra" Yx—a)+r(r—1)&?

where £, is between x and a. Set x =x; > 0 in (2), multiply by «; > 0 and sum for
i=1,...,n. Without loss of generality let us assume that X.7_, &, =1 and let us use
the notatlon rB; for X' B;. Set a =Xa;x;>0in (2). It follows that

Tax{ 2 }(Tax) {30 T 77" 3

Equality holds in (3) iff the x,’s are all equal. Relation (3) shows that ¢(x) =x" is
strictly convex (concave) for r <Qor r>1 (0 <r<1).
Using the increasing or decreasing property of ¢(x)=x" we obtain from (3)

r>1,
Z‘”{ >(Z“x) r{r<1, r+0, )
with equality iff the x,’s are all equal.
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The relation (4) contains several well known inequalities.

Example 1. Set a;=1/n.If r=2 we have
1 1 172
— < | — 2
~ x5 )

which is the arithmetic mean-root mean square inequality. If r= —1 then
(1/n)Xx; = ((1/n)L1/x,)~" which is the harmonic mean-arithmetic mean inequal-
ity.

Example 2. Let r+0 and s be such that 1/r+1/s=1. Let n,>0 and & >0,
and set a; =n;/(Inf) and x, = & /7;/". 1t follows that

Tem{ 2 J(Zer) " (Sn)" tor {[21 4,

which is the classical inequality of Holder. For r =s =2 we obtain the Cauchy-
Schwarz inequality.

Let r+ 0 and consider M,(x,a)=(XZa,x/)'/" as a function of r. Let us prove
two properties of this function.

Property 1. M, (x, a) is a strictly increasing function with respect to r iff the x;s are
not all equal.

Proof. Consider & >0 (i=1,...,n) and assume s <r. If >0 then s/r <1 and
from (4) we have

- r/s
Zaifiz(zaifis/ ) :
If r <0 then 1 <s/r and again from (4) we have
s/r\"/s
Zaifis(zaigi/ ) .

Set &, =x/ and consider the rth root. We obtain

(Zax)” <(Tax))”. O

Remark 1. The standard proof of this result presented by Cooper [2], and that we
can also find in [1, pp. 16-18] or [3, pp. 76-77], is based on the convexity of x log x
or the log-convexity of x*.

Let us use the notation ¢ = min{¢,,...,¢,} <max{¢,,..., &) =¢.

Property 2. The following limits hold for M (x, a):

(i) lim M, (x,a) =X
r— +o

(ii) Im})M(x ya) =Ilxf
r—)

(iif) lim M, (x,a)=x.
r— —

212 THE COLLEGE MATHEMATICS JOURNAL



Proof of (i). For any r>0 we have a'/"% < M,(x,a) <X and the result follows
from lim al/r=1.

r— +o00 =

Proof of (ii). We have M,(x,a)=-exp((1/r)log(a,;x;)) and using the mean
value theorem we have

Y. a;xf log x;
e Lenst) =r
where p is strictly between 0 and . When r — 0 then p — 0 and the result follows
(we can also prove this result using PHospital’s rule [1, p. 16]).

Proof of (iii). For r <0 we have M,(x,a) =1/M_,(1/x, a) and the result follows
from (). O

In summary we have for s <0 <r

J_CS(Zaixi:)l/SSfo"‘s(Zaixf)l/rsx (5)

with equalities iff the xs are all equal.

Example 3. For r=1and a; =1/n we obtain (Ilx,)"/" < (1/n)Lx, which is the
arithmetic mean-geometric mean inequality.

Finally, inequalities (5) can be extended to integrable functions. For ex-
ample, consider a Riemann integrable function f(x) defined on [a,b] and
such that 0 <m <f(x) <M < +o. If we set a;,=1/n and x,=f(¢,), where
a+(—-1D)(b—a)/n)<¢ <a+i((b—a)/n), and consider the limit when n goes
to +o we obtain for s <0 <r

1 b 1/s . 1 b 1/r
s (/b-a)f; log f(x)dx r
ms(b_aj;f(x)dx) <e e s(b_afaf(x)dx) <M.

We can obtain the same result for a Lebesque integrable function.
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In My Experience...
Experience is the name everyone gives to their mistakes.

Oscar Wilde, The Oxford Dictionary of Quotations, Third Ed., Oxford University
Press, N.Y., 1979, p. 573.
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