games. Equating these expressions for the total number of games yields

$$1 + t + t^{2} + \dots + t^{n-1} = \frac{t^{n} - 1}{t - 1}.$$
 (1)

Although we derived (1) by considering only integral t > 1 and positive integral n, it forms an algebraic identity valid for all complex $t \ne 1$. Replacing n with n + 1 gives the more standard form

$$1+t+t^2+\cdots+t^n=\frac{t^{n+1}-1}{t-1},$$

valid for all whole numbers n.

Weighted Means of Order r and Related Inequalities: An Elementary Approach

François Dubeau, Collège militaire royal de Saint-Jean, Saint-Jean-sur-Richelieu, Québec, Canada, J0J 1R0

The aim of this note is to present the properties of weighted means of order r using elementary techniques of analysis. In particular the increasing property of the weighted mean of order r, as a function of r, is proved using a more elementary technique than the standard proof.

Let r be any nonzero real number and let us consider the function $\phi(x) = x^r$ defined on the interval $I = (0, +\infty)$. Using the mean value theorem, for any fixed strictly positive real number a, we have

$$x^{r} = a^{r} + r\xi_{a}^{r-1}(x - a) \tag{1}$$

where ξ_a is between x and a. It follows that $\phi(x) = x^r$ is strictly increasing (decreasing) if r > 0 (r < 0).

Using the Taylor expansion of order 1, we have

$$x^{r} = a^{r} + ra^{r-1}(x-a) + r(r-1)\xi_{a}^{r-2} \frac{(x-a)^{2}}{2}$$
 (2)

where ξ_a is between x and a. Set $x = x_i > 0$ in (2), multiply by $\alpha_i > 0$ and sum for $i = 1, \ldots, n$. Without loss of generality let us assume that $\sum_{i=1}^{n} \alpha_i = 1$ and let us use the notation $\sum \beta_i$ for $\sum_{i=1}^{n} \beta_i$. Set $a = \sum \alpha_i x_i > 0$ in (2). It follows that

$$\sum \alpha_i x_i^r \begin{cases} \geq \\ \leq \end{cases} \left(\sum \alpha_i x_i \right)^r \quad \text{for } \begin{cases} r < 0 \quad \text{or} \quad r > 1, \\ 0 < r < 1. \end{cases}$$
 (3)

Equality holds in (3) iff the x_i 's are all equal. Relation (3) shows that $\phi(x) = x^r$ is strictly convex (concave) for r < 0 or r > 1 (0 < r < 1).

Using the increasing or decreasing property of $\phi(x) = x^r$ we obtain from (3)

$$\sum \alpha_i x_i \left\{ \leq \atop \geq \right\} \left(\sum \alpha_i x_i^r \right)^{1/r} \quad \text{for } \begin{cases} r > 1, \\ r < 1, \quad r \neq 0, \end{cases}$$
 (4)

with equality iff the x_i 's are all equal.

The relation (4) contains several well known inequalities.

Example 1. Set $\alpha_i = 1/n$. If r = 2 we have

$$\frac{1}{n} \sum x_i \le \left(\frac{1}{n} \sum x_i^2\right)^{1/2}$$

which is the arithmetic mean-root mean square inequality. If r = -1 then $(1/n)\sum x_i \ge ((1/n)\sum 1/x_i)^{-1}$ which is the harmonic mean-arithmetic mean inequality.

Example 2. Let $r \neq 0$ and s be such that 1/r + 1/s = 1. Let $\eta_i > 0$ and $\xi_i > 0$, and set $\alpha_i = \eta_i^s / (\Sigma \eta_i^s)$ and $x_i = \xi_i / \eta_i^{s/r}$. It follows that

$$\sum \xi_i \eta_i \left\{ \leq \atop \geq \right\} \left(\sum \xi_i^r \right)^{1/r} \left(\sum \eta_i^s \right)^{1/s} \quad \text{for } \left\{ \begin{matrix} r > 1, \\ r < 1, \end{matrix} \right. \quad r \neq 0,$$

which is the classical inequality of Hölder. For r = s = 2 we obtain the Cauchy-Schwarz inequality.

Let $r \neq 0$ and consider $M_r(x, \alpha) = (\sum \alpha_i x_i^r)^{1/r}$ as a function of r. Let us prove two properties of this function.

Property 1. $M_r(x, \alpha)$ is a strictly increasing function with respect to r iff the $x_i's$ are not all equal.

Proof. Consider $\xi_i > 0$ (i = 1, ..., n) and assume s < r. If r > 0 then s/r < 1 and from (4) we have

$$\sum \alpha_i \xi_i \ge \left(\sum \alpha_i \xi_i^{s/r}\right)^{r/s}.$$

If r < 0 then 1 < s/r and again from (4) we have

$$\sum \alpha_i \xi_i \le \left(\sum \alpha_i \xi_i^{s/r}\right)^{r/s}.$$

Set $\xi_i = x_i^r$ and consider the rth root. We obtain

$$\left(\sum \alpha_i x_i^s\right)^{1/s} < \left(\sum \alpha_i x_i^r\right)^{1/r}. \quad \Box$$

Remark 1. The standard proof of this result presented by Cooper [2], and that we can also find in [1, pp. 16–18] or [3, pp. 76–77], is based on the convexity of $x \log x$ or the log-convexity of x^x .

Let us use the notation $\underline{\xi} = \min\{\xi_1, \dots, \xi_n\} \le \max\{\xi_1, \dots, \xi_n\} = \overline{\xi}$.

Property 2. The following limits hold for $M_r(x, \alpha)$:

$$\lim_{r \to +\infty} M_r(x, \alpha) = \bar{x}$$

(ii)
$$\lim_{r \to 0} M_r(x, \alpha) = \prod x_i^{\alpha_i},$$

(iii)
$$\lim_{r \to -\infty} M_r(x, \alpha) = \underline{x}.$$

Proof of (i). For any r > 0 we have $\underline{\alpha}^{1/r} \overline{x} \le M_r(x, \alpha) \le \overline{x}$ and the result follows from $\lim_{r \to +\infty} \underline{\alpha}^{1/r} = 1$.

Proof of (ii). We have $M_r(x,\alpha) = \exp((1/r)\log(\sum \alpha_i x_i^r))$ and using the mean value theorem we have

$$\log\left(\sum \alpha_i x_i^r\right) = r \frac{\sum \alpha_i x_i^\rho \log x_i}{\sum \alpha_i x_i^\rho}$$

where ρ is strictly between 0 and r. When $r \to 0$ then $\rho \to 0$ and the result follows (we can also prove this result using l'Hospital's rule [1, p. 16]).

Proof of (iii). For r < 0 we have $M_r(x, \alpha) = 1/M_{-r}(1/x, \alpha)$ and the result follows from (i). \square

In summary we have for s < 0 < r

$$\underline{x} \le \left(\sum \alpha_i x_i^s\right)^{1/s} \le \Pi x_i^{\alpha_i} \le \left(\sum \alpha_i x_i^r\right)^{1/r} \le \overline{x} \tag{5}$$

with equalities iff the x_i 's are all equal.

Example 3. For r = 1 and $\alpha_i = 1/n$ we obtain $(\prod x_i)^{1/n} \le (1/n)\sum x_i$ which is the arithmetic mean-geometric mean inequality.

Finally, inequalities (5) can be extended to integrable functions. For example, consider a Riemann integrable function f(x) defined on [a,b] and such that $0 < m \le f(x) \le M < +\infty$. If we set $\alpha_i = 1/n$ and $x_i = f(\xi_i)$, where $a + (i-1)((b-a)/n) \le \xi_i \le a + i((b-a)/n)$, and consider the limit when n goes to $+\infty$ we obtain for s < 0 < r

$$m \le \left(\frac{1}{b-a} \int_a^b f^s(x) \, dx\right)^{1/s} \le e^{(1/b-a)\int_a^b \log f(x) \, dx} \le \left(\frac{1}{b-a} \int_a^b f^r(x) \, dx\right)^{1/r} \le M.$$

We can obtain the same result for a Lebesque integrable function.

References

- 1. Beckenbach, E. F. and Bellman R., *Inequalities*, Springer-Verlag, Berlin-Heidelberg-New York, 1965.
- 2. Cooper, R., Notes on certain inequalities: II, Journal of the London Mathematical Society 2 (1927) 159-163.
- 3. Mitrinovic, D. S., Analytic Inequalities, Springer-Verlag, New York-Heidelberg-Berlin, 1970.

In My Experience...

Experience is the name everyone gives to their mistakes.

Oscar Wilde, *The Oxford Dictionary of Quotations*, Third Ed., Oxford University Press, N.Y., 1979, p. 573.