Example 5. Find the inverse Laplace transform for 1/s(s* + 1)(s? + 2).

Solution. Since
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Exercise. Obtain the analogous identity for
1
(p(x) +a)(p(x) +b)(p(x) +c)

o

Differentiation via Partial Fractions: A Case against CAS
Russell Jay Hendel, Dowling College, Oakdale, NY 11769

Manipulations versus thinking: two views. On an autumnal day in 1989 I was
introduced for the first time to CAS. Wade Ellis, Jr. presented a workshop on True
Basic Calculus at the Second Technology Conference [1]. After seeing how the

program worked I typed in the function G(x) = and pressed the key

2
that yielded derivatives. The answer appeared on )tche+s)(czreen in about 15 seconds.
Pressing several more keys yielded, almost immediately, the second, third, and
fourth derivatives. The entire process took about one minute. This was impressive.
My colleagues, when sampled, took between three and ten minutes to calculate
these derivatives, and some students whom I asked took between five and thirty
minutes!

The argument that CAS software performs manipulations, leaving the instructor
more time to teach concepts, now seemed cogent, and without a reasonable
counterargument.

The day before, however, in a keynote lecture, former MAA president Lynn
Steen asked if computer packages for calculus won’t lead to much meaningless
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calculation, in a way that many statistics packages are currently used. He suggested
that we seek styles of instruction that minimize inane use of mathematical software
[17

p. 19].

I left the conference with these two opposing views in mind. The purpose of this
note is to support Lynn Steen’s warning and to suggest that the proper teaching of
calculus may not need more software but, instead, more techniques and better
theoretical applications.

Patterns versus manipulations. Returning to our function G(x) consider the
problem of finding a pattern in its successive derivatives. Equivalently, consider the
problem of finding a closed formula for G"(x), the nth derivative of G(x). A
CAS can quickly give the first 10 derivatives of G(x) (some of which will occupy a
whole screen!), but the software cannot discern even an elementary pattern.

In this case, even with the first 10 derivatives computed, a human user cannot
find a pattern either. The reader is invited to try for himself (herself)! We conclude
in this case that the manipulative ability of CAS encourages the student to waste a
great deal of time watching the computer perform long meaningless manipulations
which do not suggest the ideas necessary to find a general pattern.

An elegant solution. The technical, yet elegant, details of finding a pattern in the
derivatives of G(x) are the following: A partial fraction expansion of G(x) yields

B o
G(x)= +——B with 4 = -~ and B=

X—a Xx-— B—a B—a

where a and B denote the two roots of the equation x% + x — 1 = 0. It immediately
follows that

(-1)"nt4 . (-1)"'n'B
(x_a)n+1 (x_B)n+l'

G™(x) =

This solves the problem of finding a closed formula for the nth derivative of G(x).
(G.H. Hardy’s classic [2, p. 223] is a source for differentiation via partial fractions.)

The solution—more techniques? In summary, to find a general pattern for
G"(x), a new technique must be introduced: partial fraction expansions for
differentiation. Appreciation of specific techniques can be achieved by skillful
choice of fresh examples that can be solved only by these techniques.

A calculus text appears as a collection of manipulations if its computational
exercises repetitively request standard techniques that do not challenge the stu-
dent. The current remedy is to fill calculus books with a variety of real world
applications that challenge the student’s modeling ability. We suggest also that a
calculus text can be made interesting and challenging precisely by eliciting new
applications of existing techniques.
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Graphs and Derivatives of the Inverse Trig Functions
Daniel A. Moran, Michigan State University, East Lansing, MI 48824

In a calculus course the differentiation formulas for the inverse trig functions are
derived by implicit differentiation (at least for two or three of the functions). To
avoid tedious repetition, the formulas for the others are merely stated, and their
proofs omitted or left as an exercise.

The approach outlined below gives half of the differentiation formulas as
immediate consequences of the others. After the inverse functions are defined,
it is established that f~!(x) and cof “'(x) are always complementary when f is
sine, tangent or secant. Along the way, there is an opportunity to use graphics
(computer-driven or otherwise) and strengthen the students’ grasp of the elemen-
tary geometry of reflections and translations. And the whole process takes less
classroom time than the conventional method!

The archetypical demonstration:

|
3

y=sin"'x y=—sin"lx y=——sin"1x

|3
|3

In the figure, the first graph is reflected in the horizontal axis to produce the
second; the latter is then translated 7 /2 units upward to yield the third (which is
evidently congruent to the graph of y =cos™!x). This establishes that sin™! x
+cos"!x=m/2. We can now differentiate to discover that D, cos™!x=
—D, sin"! x.

The demonstrations for tan~! and sec™! require practically no change from the
above.
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