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Given a nonnegative increasing function f defined for > 0, let V(r) denote the
volume of the solid obtained by revolving about the y-axis the first quadrant region
under the curve y = f(z) for 0 < z < r, and let C(r) = nr?f(r) be the volume of
the corresponding right circular cylinder with radius r and height f(r), as shown in
Figure 1.

Figure 1. Inner cavity has volume

C(r)y=V(r).

When f(z) = kz the inner cavity is a cone; thus V(r)/C(r) = 2. If f(z) = ka?
the cavity is a paraboloid with volume equal to V(r), so V(r)/C(r) = 5. It is easy
to show that if f(z) = kz®, with a,k > 0, this ratio is constant;
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We were surprised to discover a sort of converse: The only twice differentiable
increasing functions for which the ratio V(r)/C(r) is constant are power functions
f(z) = kx®, with a,k > 0. Showing that this geometric property characterizes the
two-parameter family of power functions provides a nice application of elementary
differential equations.

First, if f(z) = kz®, with a,k > 0, then using the method of cylindrical shells, we
see that

V(r)= 27r/ zf(z)dz = 27rk/ 2t dz
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Hence,
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Proposition. Suppose f is a positive, strictly increasing, twice differentiable func-
tion on an interval I = (0,b), and the ratio V(r)/C(r) is constant for r € I. Then
f(z) = kx®, for some positive constants k and a.
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Proof. By differentiating the constant quotient V' (r)/C(r) we see that C(r)V'(r) —
C'(r)V(r) = 0. Substituting C(r) = 72 f(r) and applying the fundamental theorem
of calculus to find V/(r), we get
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Note that our hypotheses imply that r, f(r), and f/(r) are all positive on I, so the
denominator on the right side of (1) is nonzero.
Differentiating (1) gives

(rf' +2£)2rf(rf + f) — (rf)*(rf" + 3f")
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where for simplicity we have suppressed the argument r of the functions. After a bit
of algebraic manipulation, this equation becomes

rf=

rf?—ff —rff'=0 (2)

Changing to the customary notation of differential equations, we will let = repre-
sent the independent variable (instead of 7) and let y = f(z) denote the dependent
variable, so that (2) becomes

zy? —yy —ayy” =0. (3)

Since z, y, and g’ are all positive on I, we may divide (3) by —zyy’ to get
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Integrating yields

Iny —Iny=—Inz +¢,

or
/

lny— =c—Inz.
Y

Applying the exponential function to both sides then gives

where a = €€ is a positive constant.
Integrating again, we conclude that Iny = alnz + K, hence y = kz® where
k = eX is a positive constant.
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