CLASSROOM CAPSULES

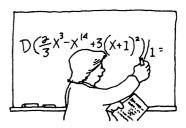
EDITOR

Thomas A. Farmer

Department of Mathematics and Statistics

Miami University

Oxford, OH 45056-1641



A Classroom Capsule is a short article that contains a new insight on a topic taught in the earlier years of undergraduate mathematics. Please submit manuscripts prepared according to the guidelines on the inside front cover to Tom Farmer.

Natural Logarithms via Long Division

Frank Burk (fburk@csuchico.edu), California State University at Chico, CA 95929

Many calculus students are aware of the beautiful series expansion for $\ln 2$. It is the purpose of this note to develop such expansions for $\ln 3$ and $\ln 4$ by elementary methods. The basic ideas are: $\frac{1}{1+x}$, $\frac{1+2x}{1+x+x^2}$, $\frac{1+2x+3x^2}{1+x+x^2+x^3}$, etc., have the form " $\frac{du}{u}$ ", and, long division. For another approach see [1]. We begin with the familiar, $\ln 2$.

$$\ln 2 = \int_0^1 \frac{1}{1+x} dx$$

$$= \int_0^1 \left[(1-x) + (x^2 - x^3) + \dots + (x^{2k-2} - x^{2k-1}) + \frac{x^{2k}}{1+x} \right] dx$$

$$= \left(1 - \frac{1}{2} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \dots + \left(\frac{1}{2k-1} - \frac{1}{2k} \right) + \int_0^1 \frac{x^{2k}}{1+x} dx.$$

Using partial sum notation $(s_n = a_1 + a_2 + \cdots + a_n)$, we have shown

$$|\ln 2 - s_{2k}| = \left| \int_0^1 \frac{x^{2k}}{1+x} \, dx \right| < \frac{1}{2k+1}.$$

But then

$$\begin{split} \left| \ln 2 - s_{2k+1} \right| & \leq \left| \ln 2 - s_{2k} \right| + \left| s_{2k} - s_{2k+1} \right| \\ & \leq \frac{1}{2k+1} + \frac{1}{2k+1} = \frac{2}{2k+1} \end{split}$$

Because n = 2k or 2k + 1,

$$\left|\ln 2 - s_n\right| < \frac{2}{n}$$

and

$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

We mimic this argument for ln 3.

$$\ln 3 = \int_0^1 \frac{1+2x}{1+x+x^2} dx$$

$$= \int_0^1 \left[(1+x-2x^2) + (x^3+x^4-2x^5) + \cdots + (x^{3k-3}+x^{3k-2}-2x^{3k-1}) + \frac{x^{3k}+2x^{3k+1}}{1+x+x^2} \right] dx$$

$$= \left(1 + \frac{1}{2} - \frac{2}{3} \right) + \left(\frac{1}{4} + \frac{1}{5} - \frac{2}{6} \right) + \cdots$$

$$+ \left(\frac{1}{3k-2} + \frac{1}{3k-1} - \frac{2}{3k} \right) + \int_0^1 \frac{x^{3k}+2x^{3k+1}}{1+x+x^2} dx.$$

Using partial sums,

$$\left| \ln 3 - s_{3k} \right| = \left| \int_0^1 \frac{x^{3k} + 2x^{3k+1}}{1 + x + x^2} \, dx \right| < \frac{3}{3k+1}.$$

But then

$$|\ln 3 - s_{3k+1}| \le |\ln 3 - s_{3k}| + |s_{3k} - s_{3k+1}|$$

 $< \frac{3}{3k+1} + \frac{1}{3k+1} = \frac{4}{3k+1},$

and

$$\begin{split} \left| \ln 3 - s_{3k+2} \right| & \leq \left| \ln 3 - s_{3k} \right| + \left| s_{3k} - s_{3k+1} \right| + \left| s_{3k+1} - s_{3k+2} \right| \\ & \leq \frac{3}{3k+1} + \frac{1}{3k+1} + \frac{1}{3k+2} < \frac{5}{3k+1} \,. \end{split}$$

Since n = 3k, or 3k + 1, or 3k + 2,

$$|\ln 3 - s_n| < \frac{5}{n-1}, \quad n \ge 2.$$

Thus,

$$\ln 3 = 1 + \frac{1}{2} - \frac{2}{3} + \frac{1}{4} + \frac{1}{5} - \frac{2}{6} + \frac{1}{7} + \frac{1}{8} - \frac{2}{9} + \cdots$$

The reader may similarly show

$$\ln 4 = \int_0^1 \frac{1 + 2x + 3x^2}{1 + x + x^2 + x^3} dx$$

$$= \left(1 + \frac{1}{2} + \frac{1}{3} - \frac{3}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} - \frac{3}{8}\right) + \cdots$$

$$+ \left(\frac{1}{4k - 3} + \frac{1}{4k - 2} + \frac{1}{4k - 1} - \frac{3}{4k}\right)$$

$$+ \int_0^1 \frac{x^{4k} + 2x^{4k+1} + 3x^{4k+2}}{1 + x + x^2 + x^3} dx$$

$$= 1 + \frac{1}{2} + \frac{1}{3} - \frac{3}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} - \frac{3}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} - \frac{3}{12} + \cdots$$

it is straightforward though cumbersome to show

$$\ln N = 1 + \frac{1}{2} + \dots + \frac{1}{N-1} - \frac{N-1}{N} + \frac{1}{N+1} + \frac{1}{N+2} + \dots + \frac{1}{2N-1} - \frac{N-1}{2N} + \dots$$

References

1. C. Kicey and S. Goel, A series for ln k, American Mathematical Monthly 105 (1998).

Simple Geometric Solutions to De l'Hospital's Pulley Problem

Raymond Boute, INTEC, University of Ghent, Belgium

In a recent paper, Hahn [2] discusses De l'Hospital's solution to the following problem. A weight is attached by a cord to a point in the ceiling. The cord runs over a pulley attached by a cord of length r to a point in the ceiling at distance d from the first as shown in Figure 1. The problem is to find the equilibrium configuration,

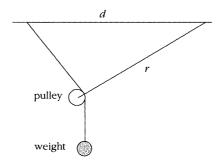


Figure 1. Arrangement of weight and pulley.