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In almost every calculus book can be found problems of the form “Given a point
(x,, ¥,) find an equation of the normal line to the graph of y=/f(x) passing
through the point.” This leads to the more interesting question of how many normal
lines of a given smooth curve pass through a given point not on the curve, and we
believe this question provides a source of good exercises or projects for an
introductory calculus class. The analysis can also provide opportunities for creative
computer graphics.

Let ¢ be a smooth curve in the xy-plane i.e., the graph of a differentiable
function, hence having a normal line at each point. Let (4, b) be any point. We
define the N-rank of (a, b) to be the number of points (x, ¥) on C whose normal
line contains the point (&, b). We note that distinct points on C may have the same
normal line, and our definition of the N-rank of (a, b) counts the number of normal
lines, with multiplicities, that contain (&, b). For example the cubic

CZ
x=t, y=-—9—t3+ct2+t

has the line y = —x normal at both the points (0,0) and (—6/¢,6/c¢) on its graph.

Our problem is to describe graphically those regions in the plane having N-rank
n,m=0,1,2,.... We will give a complete solution when C is the graph of a
polynomial function.

For example,

(a) If C is a line then every point has N-rank 1.

(b) If C is a circle then its center has N-rank ® and every other point has
N-rank 2.
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(o) Let C be the parabola x =, y = t%. Then the normal line to the parabola at a
point (7, ) is

1
—1’=——(x—1), t#0
y 5, (x=1)
and x =0 if #=0. Equivalently, the normal line to C at (¢, #*) for all # is

203 =2ty +t—x=0.

Therefore the N-rank of (x, ) is the number of distinct real roots of the reduced

cubic
1-2y X
r+ 1= —.

2 2

From the theory of equations we know that a reduced cubic #* + pt + g will have

(i) three real roots of which at least two are equal if 4p® +27g% = 0;
(ii) one real root if 4 p* +27g* > 0;
(iii) three distinct real roots if 4p® +27g* < 0.

Applying these results to the cubic we conclude that it will have two roots or one
triple root if (x, ») lies on the curve

4( 1_22y)3+27(§)2=o. (1)

The points above the curve have N-rank 3, those below have N-rank 1. The graphs
of (1), the parabola, and points of various N-ranks with associated normal lines are
shown in Figures 1, 2, and 3. The cusp of the curve (1) is the point (0,1/2) and at
that point the reduced cubic is #*, which has the single root 7= 0 of multiplicity 3.
Consequently (0,1/2) has N-rank 1, and all other points on the curve (1) have
N-rank 2.

N-rank 1

Figure 1
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N-rank 2

Figure 2

Assume, now, that C is the graph of a polynomial x=¢, y=p(f). Then an
equation for the normal line to C at the point (¢, p(1)) is

y=p(t)=—

1

—(x—1), p'(t)+#0
p'(1) ) )
or x=1if p'(y) =0. We define a function of three variables by

g(t,x,y)=p()p'(t) —p'(t)y+1t—x (2)

Figure 3
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and note that

(i) The N-rank of (x, ») is the number of different real values of ¢ for which
g(t, x, y)=0.
(ii) If the degree of p(1) is n then the degree of g in ¢ is 22— 1.
(iii) Since g is a polynomial in ¢ of odd degree 27 —1, every point (x, y) has
N-rank satisfying 1 < N-rank <2n—1.

The evolute of a curve C is defined to be the locus of the centers of curvature of
C. We will show that for a polynomial, its evolute will be the boundary between the
regions containing points of N-rank 72 for various 7.

The analysis above shows that the rank of the point (x, ) is the number of
different real solutions t of

p()p'(1) —p' () y+1-x=0. (3)

Fix x =x, and solve (3) for y to obtain

( ) 4 t—x,
y=p(t N
p'(1)
Let s=h(2) =p(t) = ;—(9:;’ . If x, does not belong to a vertical normal line to the

graph of p, i.e., if x,# ¢ for all # such that p'(z) =0, then the N-rank of (x,, ) is
the number of values of ¢ such that h(#) = y, or equivalently the number of points
of intersection of the horizontal line s =y with the graph of bh. If x,=1t where
p'(1) = 0 then the N-rank of (x,, ) is one plus the number of points of intersection
of s=y with the graph of h. In either case we observe that the N-rank of (x,, »)
changes only at those values of y such that the line s=y is a horizontal tangent
line to the graph of b at one or more relative extremal points of . So as y varies,
the N-rank of (x,, y) changes only when y = h(7) with

p'(t) = p" (1) (t—x)
p'(1)? '

h'(t)=0=p'(t) +

Solving for x, gives
3

N Gy i©)
R AGEAON

Substitute this into (3) to obtain

' 2
p'(1) 1
" + " N
P p'()
We conclude that in moving along the vertical line x = x, the N-rank of the point
(x,, ) changes only when there exists a ¢ such that

y=p(1)+

O i0

N IORNIOY
- P’ 1
AV IORION
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By letting y, be fixed and varying x along the horizontal line y =y, we obtain
the same equations as the previous ones, with x, replaced by x and y replaced by
Yo We therefore conclude that by varying x or y we can identify the N-rank of a
point (x, »), and a change of rank can occur only when there is a  such that

P P
IR AGK

Pt 1

ITORNA0)

(4)

y=p(1) +

We note that the curve (4) is the locus of points (x, y) such that g(¢, x, y) (see
(2)) has a repeated real root. For if 7 is a repeated root of g(#, x, y) then ¢ is a
solution to

g(t,x,y)=p(t)p'(t) —p'(t)y+t—x=0,

J 2 (5)
=8t %, ) =p' ()" + (1) p" (1) = p" (1) y+1=0

where necessarily p”(#) # 0, otherwise the second equation has no solution. Conse-
quently we may solve (5) for x and y in terms of ¢ to obtain (4).

The parametric curve (4) gives the set of points (x, ») where the polynomial
g(t, x, y) has repeated roots. This curve is the evolute of C (See, for example,
J. Dennis Lawrence, A Catalog of Special Plane Curves, Dover, 1972); it is the locus
of the centers of curvature of C. Our analysis shows that the evolute of the
polynomial curve C: x=t¢, y=p(t) gives the boundary for the regions of various
N-ranks.

We now give the graphs of several polynomial curves and their evolute curves,
and label the N-ranks of the various regions.

(a) Let C be the cubic x=t¢, y=1>. The evolute of C is

2714312 , 1 + 94
xX=t———, =1+
6t Y 6t

and the graph of this curve together with C is in Figure 4. Points in region A have

N-rank 3 while points in region B have N-rank 1. The two cusps occur where
dx 2

1 1/4 )
-~ 0 e, where x= + 5(_5 . One identifies these as points of rank 1. All
a

other points on the evolute curve have rank 2.
(b) Let C be the curve x=1, y=1>— 31 The evolute of C is

(312 —3) + (312 — 3)
=t— .
ot

1+(3t2—3)2
=3 -3t -
‘ 3 6t
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Figure 4

and its graph, along with C, is in Figure 5. By taking test points in each region we
identify region A as points of rank 5, region B consists of points of rank 3 and
region C contains points of rank 1. The two cusps have rank 3, as do the two points
of intersection. The remaining points on the evolute curve have rank 2 (boundary
points between B and C) or 4 (boundary points between 4 and B).

-2

Figure 5
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(c) Let C be the curve x =1, y=(t* — 1)(#* — 2). The evolute of C is
(413 —61)° + (41° = 61)

12t -6 ’
1+ (405 —61)°
122 -6

y=t'=37+2+

whose graph is in Figure 6, together with C.

A: Points of rank 1
B: Points of rank 3
C: Points of rank 5
D: Points of rank 7
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A Polynomial with a Root Mod m for Every m
Allen J. Schwenk (schwenk@wmich.edu)
Western Michigan University, Kalamazoo, MI 49008-5152

If a polynomial has an integer root, of course it must have that same root mod m
for every m € N. This issue often arises in abstract algebra where we may use the
contrapositive form saying that if we can show that no solution exists mod m for
some m, then there is no integer solution. For example, the equation x? —2y? =3
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