3. Graph the function (1/25)P, where P is the price function from part 1. Since
the car gets 25 miles per gallon, (1/25)P(z) is your cost per mile during the first
2 miles if you fill the tank z miles from city A. Find a geometric interpretation
of the total cost of gasoline as the sum of areas of rectangles overlaid on this
graph. Repeat for the price function of part 2.

4. Now repeat parts 1 and 2 allowing two stops between A and B. Is this cheaper?
What is the least possible cost if there is no limit on the number of stops? Show
the geometric interpretation as areas for the case of unlimited stops.

After the problem was assigned, we spent a few minutes of the following class
meetings discussing the students’ progress and giving hints. It was surprising to see
how many students had trouble writing down the linear expression for the price
function and finding the values of p and k without help. Although only about half
of the students got the point in part 4 about unlimited stops and integration, many
of those who did confessed to being fascinated by it. Some also appreciated using
Maple in the context of a larger “real” problem rather than just another drill. In the
end-of-semester critiques, many students mentioned that they like doing “real-world”
problems such as the rental car problem. One even claimed to have used these ideas
to save money on the trip home during a break.

Complex Eigenvalues and Rotations: Are Your Students Going in Circles?
James Duemmel, Western Washington University, Bellingham, WA 98225

In an elementary linear algebra class, when you encounter a real matrix with complex
eigenvalues, what do you say? Do you comment that it represents essentially a
rotation in an unusual coordinate system? This approach is well explained in D. Lay’s
Linear Algebra and Its Applications (Addison Wesley, Reading, MA, 1994), where one
finds this theorem.

Theorem. Let A be a real 2 x 2 matrix with a complex eigenvalue A = a—bi (b # 0)
and associated eigenvector w in C2. Then A = PCP~!, where P is the 2 x 2 real

matrix [Re(w) Im(w)] and C = [Z _ab].

Al =1, then €' = b a sinf cos@

a rotation by the angle 8; otherwise C represents the composition of this rotation
with a scaling by the factor |A|. Since the matrix P is the standard matrix of the
linear transformation 7 that sends the standard basis {e1, ez} to the basis {u,v} =
{Re(w),Im(w)}, it follows that A is the standard matrix of the composition of 771,
then the rotation through the angle 6, then the scaling by the factor |A|, and finally
7. Without further information about the basis {u, v}, however, it is hard to picture

the geometric effect of 7 and consequently of A.

a _b] = [COS& —sm&} is the standard matrix of

A 3-D perspective. Perhaps we can do better by considering the 3 x 3 matrix

[61 (1)} and the associated transformation « : R® — R3. In fact, we will show that
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zy-plane

Figure 1

there is a plane W through the origin in R3 such that the geometric effect of o on a
vector x in the xy-plane is the composition of a vertical lifting of x to the plane W,
rotation in W through the angle 6, scaling by |\| in W, and finally projection back
to the zy-plane. See Figure 1, where the case |A| = 1 is diagrammed.

In order to construct the rotation plane W, we will use the following lemma.

Lemma. Let A be a real matrix with nonreal eigenvalue A. There is a corresponding
complex eigenvector w = u + (v where u and v are orthogonal real vectors with
|lu| =1and|v| <1

Proof. Let wg be any complex eigenvector corresponding to A. Write wg = ug+1ivy
where ug and vy are real. Since every nonzero complex scalar multiple of wy is also
an eigenvector corresponding to A, we may assume that |ug| > |vol; for if this
were not the case we could just replace wo by the eigenvector iwg = —vg + iup.
Now if (ug, vp) = 0, then w = wy/|ug|, u = ug/|ug|, and v = vq/|ug| satisfy the
required conditions.

Otherwise, consider

w1 = (cos @ + i sin p)wy
= (cos pug — sin ¢vy) + i(sin pug + cos pvy) = uy + ivy.
The inner product of the real and imaginary parts of the eigenvector wy is

(ug,v1) = (cos pug — sin vy, sin pug + cos pvy)
= sin ¢ cos ¢ [(uo, uo) — (vo, vo)] + (cos? ¢ — sin® p) (uo, vo)

1.
=3 sin 2¢ (Juo)? — [vol?) + cos 2¢ (uo, vo).

Since (ug, vo) # 0, we may choose ¢ = %arccot (%) Then (uy,vy) = 0,
and (replacing w; by iw; if necessary) we may assume that |uy| > |vi|. Thus

w = wi/|uy|, u = uy/|uy|, and v = vy /|uy| satisfy the conditions of the lemma.
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Let A be a 2 x 2 real matrix with a nonreal eigenvalue A = cos § — ¢ sin 6. Let
u + ¢v be a corresponding eigenvector with u and v real vectors, as in the lemma,
with |u| =1 and |v| < 1. Then A(u +iv) = (cos 6 — i sin 8)(u + iv). If we look at
the real and imaginary parts in this equation we obtain

Au = cos fu + sin v
(1)

Av = —sin fu + cos 9v.

Note that from the second of these equations it follows that v cannot be zero, for
—siné, the imaginary part of A, is nonzero by assumption. We may assume that in
R? the orthogonal vectors u, v, and ez form a right-handed system. Otherwise we
could replace A by its conjugate, which is also an eigenvalue; in effect this would
replace v by —v and 6 by —6. Choose a first quadrant angle £ such that cos § = |v|
and, in R3, let vi = v +sin Bes. Then |v;| = 1 and v, is orthogonal to u. Let W be
the plane through the origin spanned by u and v;. This plane intersects the zy-plane
in a line containing u and makes the angle § with the xzy-plane (see Figure 2).

zy-plane

Figure 2

Define z; = uxv;. Then [u, v, es]isan orthogonal basis for R® and [u, vy, 2]
is an orthonormal basis for R3. We can define a linear transformation on R? by
specifying the action of the transformation on these bases. Let 7 be the linear trans-
formation such that

m(u) =u m(v) =wv1 m(es) = z1.
Note that a point in the zy-plane of R? has the form au + bv + Oez and is mapped

by 7 to au+bvy +0z1 = au+bv+b sin fes, so 7 is a vertical lifting of points in the
zy-plane to points in W. (Its restriction to the subspace orthogonal to u is a rotation

380 THE COLLEGE MATHEMATICS JOURNAL



through the angle 3 followed by stretching along the line of v; by the factor sec g;
however, we are interested only in the effect of 7 on the xy-plane.)

Let p denote rotation in R? through the angle # about z; as an axis. (The rotation
should be counterclockwise as seen from the tip of z; looking back toward W.)
Then

p(u) = cos fu + sin vy

p(v1) = —sin fu + cos 6v;

The transformation 7 has an inverse since it carries a basis to a basis. Observe that
the transformation o = w1 prr satisfies

a(u) = 17 p(u) = 77 *(cos fu + sin Ov;) = cos Ou + sin Ov

a(v) =17 tp(vy) = 771 (—sin fu + cos Ov;) = —sin fu + cos Ov

ales) =17t p(z1) = 771 (z1) = es.
These equations with (1) demonstrate that the matrix representing the transformation
a = 7~ !pr with respect to the basis [u, v, es] is [61 (1)] This verifies that the

action of A can be described geometrically as lifting vectors vertically from the zy-
plane to the plane W, rotating in W, and returning vertically to the zy-plane.

0.5 _0'6} , which

As an example [see Lay, p. 308] let’s consider the matrix A = [0 75 11

has eigenvalue A = 0.8 — 0.64, with an associated eigenvector [—52} +1 [_04} . Let

0.8 —0.6 -2 —4 . . .
C = [0' 6 08 } and P = [ 5 0 ] Then C is a rotation matrix for the angle
6 = arctan(0.6/0.8) and A = PCP~1, as asserted by the theorem cited earlier.

The calculations suggested by the lemma yield ¢ = Zarccot (1222) ~ 1.1266. So

the new eigenvector with orthogonal real and imaginary parts is
o -2 | —4 2.7522 .| —3.5250
(cos ¢ +i sin ¢) ([ 5 } T [ 0 D = [2.1489] T [ 4.5147 ] '

Since its imaginary part has greater magnitude than its real part, this vector must be
0.6154 . 0.4805

—0.7882} 0.3752

with |[u| = 1 and |v| = cos § = 0.6096 < 1. So the rotation plane W is spanned by the

vectors u = [0.61540 —0.7882 0] and v; = v+sin Bes = [0.4805 0.3752 0.7927]T,

and it makes an angle of 3 ~ 0.9152, or about 52°, with the zy-plane.

These results easily generalize to the case where A is a 3 x 3 matrix, with suitable
adjustment for the third (real) eigenvalue. Several related questions may interest
students. What is a simple test to detect matrices that represent rotations? This is
elementary for 2 x 2 matrices but is more interesting for 3 x 3 matrices. How do you

identify the axis of rotation for a 3 x 3 rotation matrix? If you randomly generate a
2 x 2 real matrix, what is the probability that its eigenvalues will be nonreal?

multiplied by i; scaling then yields the eigenvector u+iv = [
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