How Much Should You Pay for a Derivative?
Bennett Eisenberg (BEO1@Lehigh.edu), Lehigh University, Bethlehem, PA 18015

Derivatives are now traded on the stock exchanges. They are not the derivatives that
we study in calculus, but rather financial derivatives: financial instruments whose
values are derived from other financial instruments. A prime example is the stock
option, which allows one to buy a stock on some future date at a set price (the
strike price) no matter what the stock is actually selling for at that time. If the stock
is selling for more than the strike price on the expiration date, then the option is
worth the difference; otherwise it is worth nothing. What the investor must decide
is, “How much should this derivative cost today?”

Those who have had an introductory probability course might say that the ex-
pected value of the option on the expiration date would be a fair price, but the
answer is not so simple. Indeed, the proper pricing of options came as something
of a surprise to experienced financial analysts. The theory led to the famous Black-
Scholes model and formula [1] for which Scholes and Merton [2, 3] received the
Nobel Prize in economics in 1997.

The analysis of the pricing of a stock option introduces students to an exciting
new area of financial mathematics and also alerts them to some pitfalls in the use of
expected values for decision making in practical situations. For simplicity, we will
ignore such factors as transaction costs, borrowing fees, inflation, interest rates, and
the possibility of selling the option before the expiration date. Here is a very simple,
but illuminating, hypothetical model for the behavior of a stock price.

A fair price. Assume that the stock price is « today and on the expiration date
will be either 80 or 120 dollars, each with probability 1/2. (Perhaps the company is
in competition with another company for a contract and each has probability 1/2 of
getting it.) The stock option has strike price 100. If the stock has value 120 at the
expiration date, then the value of the option at that time will be 120 — 100 = 20. If
the stock has value 80 at that time, then the option will not be exercised and will
have value 0. Its expected value at the expiration date is thus 20(1/2) +0(1/2) = 10.
For someone willing to assume the risk, a price of up to $10 would appear to be a
fair amount to pay for the option. As we will see, however, this is not necessarily
the case.

In deciding whether to buy an option, we must take into account what the stock
is selling for, because we also have the alternative course of purchasing the stock
outright. Suppose an option costs y. With that amount of dollars we could buy y/z
shares of stock (fractional shares are possible). The expected value of this many
shares of stock at the expiration date is 120(y/z)(1/2) + 80(y/z)(1/2) = 100y/z. If
this is more than 10, then in terms of expected values we would be better off putting
the same amount of money into the stock rather than the option. That is, we should
pay y for the option only if 100y/z < 10 or y < z/10. From the previous analyses,
a price of up to z/10 if < 100, or up to 10 if z > 100, would appear to be a fair
amount to pay for the option—but this is not the case. For z < 100 it turns out that
2/10 is too much to pay and for 100 < z < 120, 10 is too little to pay. The reason
is the possibility of arbitrage.

Arbitrage. Arbitrage means the making of a guaranteed profit in the market by a
combination of trades. As an elementary example, suppose one coin shop is selling
silver dollars for $5 each and another shop is buying them for $6 each. A trader could
buy silver dollars at the first shop and sell them to the second with a sure profit.
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However, the first store would quickly begin to charge more than $5 (since the trader
would be willing to pay somewhat more) and the second store would begin offering
less than $6. Ultimately, the silver dollar prices at the two stores would converge to
the same value.

Similarly, the possibility of arbitrage forces a unique price on the option, a price
that does not even depend on the probabilities of the stock being worth 80 or 120
at the expiration date. We will see how arbitrage works in our example, making the
unique price in fact less than z/10 when 80 < z < 100 and more than 10 when
z > 100.

To allow for arbitrage, let’s consider the possibility of not only purchasing shares
of stock but also borrowing money. Our borrowing will consist of selling non—
interest-bearing one-dollar IOU’s, payable on the expiration date of the option. We
will manage to do this in such a way that the net value of stock minus debt equals
the value of the option on the expiration date, no matter what the stock price is on
that date.

Wheeling and dealing. Say we intend to purchase A shares of stock and sell B
of the one-dollar IOU’s. On the expiration date, the net worth of our holdings will
be either 1204 — B or 804 — B, depending on whether the stock value is 120 or
80; we subtract B because we must repurchase the IOU’s. To make this position
equal to the option in value, we set 1204 — B = 20 and 80A — B = 0. This gives us
A =1/2 and B = 40; in other words, we ought to buy 1/2 share of stock and sell
40 IOU’s. At the end, we will still owe $40 to buy back the IOU’s, but by selling the
stock we can pay for that and still have enough left over to equal the value of the
option. The initial cost of this financial wheeling and dealing was (z/2) — 40. Recall
that we received $40 for the IOU’s originally, so we subtract that from the purchase
price of the stock in calculating our cost. This is balanced by carrying $40 in debt
through the period.

It follows that we should pay no more than (z/2) — 40 dollars for one option.
Indeed, since a package of buying 1/2 share of stock and selling 40 IOU’s exactly
duplicates the performance of one option at the expiration date, we must pay exactly
the same for an option as for the package. Otherwise, as in the coin example, a trader
could go around buying options and selling packages consisting of 1/2 share of stock
and $40 of debt (or vice versa, depending on whether the option or the package
is cheaper), while making a sure profit on the expiration date. Arbitrage forces the
price of (z/2) — 40 on the option.

Moreover, it is easy to see that (z/2) — 40 < /10 when z < 100. If z < 80, it
would appear that one should receive money for taking the option. This is strange,
but the condition < 80 would never occur in reality, for one could then buy the
stock with a certain profit. If z > 100, then the price of the option would exceed 10.
This also seems paradoxical, but consider the following possible maneuver. Suppose
the stock were selling for 110, and the option sold for 10. Then (z/2) — 40 = 15,
which is 5 more than the price of the option; so one could sell 1/2 share of stock,
buy 40 I0U’s, buy an option, and have $5 left over. At the expiration date, if the
stock were selling for 80, one could sell the IOU’s, buy back the 1/2 share of stock
that had been sold, and still keep the $5. If the stock were selling for 120, the option
would be worth $20. One could then sell the option and the 40 IOU’s to buy back
the 1/2 share of stock sold earlier and once again keep that $5 profit. This shows
that the arbitrage forces the price of the option to rise to $15 in this case.

Such is the world of finance. Of course, in the real stock market, players deal with
thousands of shares at a time, leading to heavy trading on option expiration dates.
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Exercise. Suppose the stock is selling for $90 a share and the option sells for $10.
Explain how a trader could make a $5 profit with no risk.
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Candies and Dollars
Saad M. Adnan, Mississippi Valley State University, Itta Bena, MS 38941

Several years ago, my brother Ali Adnan (may God rest his soul) gave me this
problem.

John was a young boy with a jar of candies which he consumed in the following manner.
On the first day, he ate one candy and gave away exactly 10% of the remaining number.
On the second day, he ate two candies and gave away exactly 10% of the remaining
number. He followed this pattern each day until the jar was empty. How many candies
did the jar originally contain?

This problem allows for a trivial solution: the jar could have held just one candy at
the start. A nontrivial solution can easily be obtained by making a guess and working
backwards. Suppose we guess that, after eating candy on the next-to-last day, John
gave away 10% of 10 candies; then he ate nine candies on the last day, the ninth,
by definition. That is, there were 18 candies when the eighth day began, 27 candies
when the seventh day began, and so on. We conclude that the jar originally contained
81 candies. This method, however, sheds no light on the surprising uniqueness of
this nontrivial solution. The following argument will derive a nontrivial solution to
a generalized form of this problem and also prove the uniqueness of the solution.

Let Jy be the original number of candies (assumed to be a positive integer) and let
Jr represent the number of candies in the jar at the end of the rth day. Thus, {J,} is
to be a sequence of nonnegative integers with the property that J, is obtained from
Jr—1 by subtracting 7 and then subtracting s% of what remains. In general, s does
not have to be 10 (and does not have to be an integer), but we restrict it so that
n = 100/s is an integer. We claim that, in the unique nontrivial solution, the candies
are finished off on day n — 1 and the jar originally contained (n — 1)? candies. To
see this, we must analyze the relation J, = (J,—1 —r)[1 — (s/100)].

Setting
s \1 1\! n
2= (1~ 15) —(1—;> gy

we get J,. = (J._1 —r)g L. Thus,

Jroi=qlr +r=q(gJrs1+r+ 1) +1r=¢Jrp1 + 7+ (r+1)g,
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