>

1 al/n a(k -1)/n ak/n a(n -1)/n an/n

Figure 1.
Thus,
—1/n “1 ‘ 1/n
n(l—a " < —dx <n(a’"—-1).
1 X
Subtracting,

—1\2
0O<lna—n(l—a ) <n@/"—1)—nl—a V") <n (a ) ,
n

where we used (1) and the assumption that a > 1 in the last inequality. Similarly,

—1\2
O<n(a1/”—1)—lna<n<a ) .
n
Taking limits, if a > 0,

lim n(l —a™V") = lim n(@"/" — 1) =Ina.
n—00

n—00

Exercise: Show that [, Inx dx = 1 using Riemann sums.

o

An Application of LHépital’s Rule
Jitan Lu (lujitan@hotmail.com), National Institute of Education, Singapore 259756

Recently, while teaching a course in calculus, I asked my students to do the follow-
ing exercise:

Let f(x) be differentiable on an interval (a, co) and lim,_, o (f'(x) + f(x)) = L
(L may be infinite). Prove lim,_, o f(x) = L.

A solution given by a student raised my interest: let g(x) = ¢* f (x). Then

lim £x) = lim £ = fjm &)
X—>00 x—>00 e* x—>o00 e*¥

= lim (f () + f'(0)) = L.
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Is this proof right or wrong? Clearly it is wrong in the sense that an application of
the co/oo version of L’ Hopital’s Rule was intended but, in fact, we do not know that
lim, .00 g(x) = 00.

One way to give a complete proof of the exercise using the student’s approach
is to handle separately the three cases in which lim,_, f(x) has a non-zero value
(including +00), has a value of 0, or fails to exist. In the first case, lim,_. o g(x) =
lim,_, o €* f(x) = oo and L’Hopital’s Rule can be applied just as the student stated.
If lim,_,» f(x) = 0 we cannot use L’Hopital’s Rule because lim,_, g(x)/¢* need
not have the co/oco form. However, by the Mean Value Theorem, we know that there
exists, for every positive integer n > a, x, € [n,n + 1] with f'(x,) = f(n + 1) —
f(n). Then lim,,_, o, f’'(x,) = 0. Moreover, since lim,_,, f(x) =0, lim,_, o, f'(x) =
limy oo (f(x) + f'(x)) =L.So L =0.

For the final case, assuming lim,_, . f(x) fails to exist (and is not -c0), we shall
obtain a contradiction. Let E denote the necessarily infinite and unbounded set of all
x € (a, oo) where f has alocal extreme value. By Rolle’s Theorem we have f'(x) =0
for all x € E. Now let {x,} be any sequence in (a, 0o) with lim,,_, X, = co. Since
the numbers x, are not generally in E, choose two sequences {y,} and {z,} in E
tending to oo and satisfying, for each n, y, < x,, < z, and either f(y,) < f(x,) <
f(za) or f(z,) < f(xu) < f(¥a). Then from lim, o0 (f(x) + f'(x)) = L we have
lim, o0 f(¥,) = lim, 0 f(z,) = L. It follows that lim,_, f(x,) = L and, hence,
lim,_, o f(x) = L. This is a contradiction.

Now it seems that the discussion should end here. But, in fact, there is a generalized
L’Hopital’s Rule that can be applied to solve the exercise directly.

Generalized L'Hoépital’s Rule: Let f and g be differentiable on (a, 0o) and assume
g'(x) #0for x € (a,00). If lim,_, o, g(x) = o0 and lim,_,, f(x)/g(x) = L (where
L may be infinite), then lim,_, o, f'(x)/g’(x) = L.

Note that we do not assume that lim,_, f(x) = oo.

Proof. We will assume that L is finite and leave the cases L = +00 to the interested
reader. Since lim,_, o f'(x)/g'(x) = L, we know that for any ¢ > 0 there exists Ny >
a such that

2
<g& x> Ny. (1)

fl&x) L|
8'(x)
But from lim, _, , g(x) = oo we know that

im 89 — jim O _ g
0 g(x) | woo g(x)

for any fixed y € (Ny, 00). Then there exists N > y such that
1 f)

< —

27 |g)

£
> g (2)

&

< —, and |Lg_(y_)_

g(x)

)
3

g(x)

hold for any x > N.
Since f and g are differentiable and g’(x) # 0 on (a, 00), by the Cauchy Mean
Value Theorem we know that for any x > N there exists § € (y, x) such that

f@ = fO) _ @)
gx)—gy)  gE&’
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On the other hand,

f(x) S
FO)—fO) 5~ 5o

- )
gx)—g() 1- &5

Thus

f&) _f) - <1 3 g(y)> LI _ SO (1 B @) pA))
glx)  glx)—g(y) g(x) glx)y g 8(x) 8(x)

b

and then

|f(x)_L’=|<f’(§) )( g(y)) L8O )

g(x) g'é) g(x) glx)  gx)
g gy f)
A A +|L 222
=e® ' ( ’g( )) | s | e
3 ¢ €

< —g - =
_98 2+3+3 g,

where (1) and (2) are used. This means that lim,_,, f(x)/g(x) =

The Attraction of Surfaces of Revolution

Adam Coffman (CoffmanA @ipfw.edu) Indiana University Purdue University Fort
Wayne, Fort Wayne, IN 46805

In my lectures for the first-year calculus sequence, I state and solve physics prob-
lems. After the section on surface area, the following problem generated some interest:

Assuming an inverse square law of attraction, what is the force exerted by a massive
surface of revolution on a point mass m located on the axis of symmetry?

An important special case is the attractive force of gravity exerted by a spherical
shell on a point mass m. Since any line through the center is an axis of symmetry, m
can be anywhere in space.

For the general case, here are some preliminary assumptions:

1. The surface of revolution is defined by a nonnegative function f(x) on a closed
interval [a, b], such that f’ exists on (a, b). The graph of f is revolved around the
x-axis as in Figure 1.

2. The surface’s mass is distributed evenly, in the sense that it has a constant “planar
density,” d > 0. The units on d might be kilograms per square meter, for example, to
distinguish it from linear or spatial density.

3. The “inverse square law” refers to a force exerted on a point mass m by an-
other point mass M separated by distance r > 0. Then the magnitude of the force is
GmMr2, for a positive constant G. M and m will be assumed nonnegative, and the
direction of the force on m is toward M.

4. To simplify calculation, the point mass m can be assumed to be at the origin, by
translating f if necessary.
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