Figure 7. Differentials

to the ground, represents the change of x and the change of y of the function as you
move from the front left point of the function. By looking at this model, students can
see the physical difference between dz and Az. They begin to understand that some of
the change in z is attributable to the change in x and some of it is attributable to the
change in y. Once they can see and grasp these ideas with functions of two variables,
they can more easily move to functions of more than two variables.

The model is not difficult to construct from pre-cut plexiglas, available at most home
improvement centers. We used sheets that were 8” by 10”. The biggest challenge in
constructing the model was to create a curved surface, but putting a piece of plexiglas
in an oven at 500 degrees for 3—4 minutes makes it just soft enough to bend with a
little force. After you bend the plexiglas to a shape you are happy with, put it in cold
water to cool it and fix the shape.

Because all of the aids mentioned in this article are small, they are most effective
in classes of less than fifty students. For large classes, multiple copies can be con-
structed (these devices are inexpensive and easy to produce). Additional copies would
allow teaching assistants to use them in smaller groups to reinforce or clarify difficult
concepts. The above are just a few of the ideas we used to help students visualize multi-
variable concepts. Students repeatedly commented on how useful they were in helping
them understand the material rather than just memorizing it. Additionally, instructors
enjoyed bringing innovative yet simple “toys” into the classroom.

Integration from First Principles
Paddy Barry (pdb@ucc.ie) National University of Ireland, Cork, Ireland

The following approach seems to involve an extension of the standard argument for
finding from first principles the value of a definite integral. Throughout we suppose
that a and b are real numbers satisfying 0 < a < b and that

P={la=xp<x1 <+ <Xy_1 <X, =b)}
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is the partition of [a, b] into n subintervals of equal length Ax = =%, with x; = a +
JAx (0= j=n).

lllustrative example. Suppose that f is the function given by f(x) = ﬁ for all
x # 0. We consider I = fa b xLz dx. Then, by definition, [ satisfies s < I < S, where

n—1 n—

s=s(P, f) = sz —— and S=SP,f)=Ax

j+1

1
2
X

~.
Il
o

are lower and upper Darboux sums for the Riemann integral /. Clearly S — s =
Ax(ﬁ—biz)—)O (n—> 00). Also0<I—s<S—ssos— 1 (n— 00),and
inturn S =s + (S —s5) = I (n — 00). Thus if (¢,),en is any sequence such that

s=s(P,)<t, <SP, f)y=S8 forall n=>1,

by the fly-swatter principle (squeeze principle) we also have thatt, — I (n — 00).
Now here is the key step. Using the observation that

we make the selection

n—1 n—1
1 1 1 1
tnzAxE = [———]:——
a

=0 YiXi+r o G0 LY X

by telescoping. Thus t, — % — % (n - oo)andso I = % — %‘

Comment. The significant extension in this is that we are not making use of a knowl-
edge in closed form of the values of the upper and lower Darboux sums. Instead, we
are choosing an intermediate sum-a telescoping sum—that can be expressed in closed
form.

Other examples.

1. The method works too for | b xk dx, for positive integers k. Although the exten-
sion is not needed here, its use does shorten the calculations. We illustrate for
the case k = 2. Note that as -

v —u® = (v —u)W*+ vu + u?),
on taking u = x; and v = x4, we have
3 3 _ 2 4,2
X = x) = Ax [y, A+ xjpx; + 5]

and so

2

Ax‘xj 3

1
<3 [x1, —x7] < Ax-x7y,.
By summing, it follows that s < 1(b° — a®) < S forevery n,so I = 1(b* —a®).
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2. The method also works for fa e dx, for integers k > 1. We illustrate this in
the case of k = 3.
We note that as

v3—ud
V—U=—-
v2 + vu + u?
. 13 RV
on taking u = x;"” and v = x;;7; we have
13 13 _ Ax
Xiv1 X = a3 173 _1/3 23"

Xjpn XX+

It follows that, since 0 < a < b,

1 1/3 1/3 1
Ax - = <3[xj+1—xj ]<Ax-—2/3—
Xj+1 X
and s < 3 (b'3 — a'®) < S for every n.
3. To obtain a further extension we consider I = [ b X172 dx. For it we start with

2 2
v+ vu +u
v3—u3=(v2—u2)—

v+u
1/2 12
where u = xj/ , U= xjil and so have
2 2
32 3/2_Axv +vu+u
AL vtu

Note that 0 < u < v, that

vV4o+ud 3 (w—u)(u+u)

vtu "= 2w+u)
3 vtou+ud (v —uw)(v+2u)
2 v+u 24w

and that both of these are positive for 0 < u < v. It follows that

3 v +out+ur 3
u<—M—— < Iy,
2 u+v 2

Hence

2
172 3/2 3/2 1/2
Ax - x; <§[xj+1—xj ]<Ax~xj+1.

It follows that s < % (b** — a*?) < S forevery n, so I = % (b** — a*/?).
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