Table 5

f(ln x)?de=x[(nx)?-2Inx+2]+C

uv uv' +u'v
(In x)*(x) (In x)?*+2Inx
—Q2In x)(x) —2lnx-2
+2x +2

Another textbook favorite is [sinln xdx. The original method runs into the
same problem as the preceding example; but the variant, Table 6, is smooth and in
fact is isomorphic to Table 3.

Table 6

fsinln xdx = 4x(sinln x — cosln x) + C

uv uv' +u'v
(sinln x)(x) sinln x +cosln x
—(cosIn x)(x) —cosln x
+sinln x

Four Crotchets on Elementary Integration
Leroy F. Meyers, Ohio State University, Columbus, OH 43210

All of the results below are well known to too few people.

1. Integral of Exponential Times Polynomial. Most students, when confronted
with

[7e(x* + 622+ 11x +6) d,
0

write the integral as the sum of four integrals and evaluate them separately, using
integration by parts six times altogether. They haven’t learned that a polynomial is
a single function, so that only three successive integrations by parts are needed.
However, explicit integration by parts can be avoided by use of a single formula,
which is more useful than many of the integration formulas customarily memorized
by students.

Let P be a polynomial, and » a nonzero constant. Then

emx P/ X P// X PIII X
P(x) - ()+ (2)— (3)+~~ +c.
m m m m

JemP(x)dx=
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(This is essentially exercise 15 on p. 225 of Courant [2].) The proof is by repeated
use of the recurrence formula

emX P/(x)
P _ mx
m (x) fe m a,

fe"”‘P(x)dx=

obtained by a single integration by parts.

Similar but slightly more complicated formulas may be obtained in the same way
for [(sin(rmx))P(x)dx and [(cos(mx))P(x) dx.

Many students haven’t learned how to use integration by parts with definite
integrals. Thus, [Ze*xdx is often “evaluated” as

2
e"x—f e*dx=e*x—e?+1,
0

which incorrectly depends on x. A better formulation is

[Pux)v () de= [u(x)o()] ey = [ (x)0(x) dx,

or
b b
f u(x)v'(x)dx= [u(x)u(x) - fu’(x)v(x) dx]
a x=a
The second form is useful when the separate terms in the first form are undefined,
as often occurs in improper integrals.

2. Using limits of integration. The notation [F(x)]2_, for F(b) — F(a) avoids the
ambiguities associated with the commonly used F(x)|2 in two ways: (1) it specifies
the letter to be substituted for, here x; and (2) it specifies the scope of the formula
to be substituted into, here F(x). Without these specifications, it is uncertain what
x — 2y + xy2|3 means. The notation [ F(x)}’_, can be used more generally to mean
lim,~, F(x) —lim,_, F(x), where the limits are taken from inside the interval
(a, b), as with improper integrals. Use of slanted arrows for one-sided limits avoids
the confusion caused by nonnumbers like —(2*) and (—2)".

3. Integration by substitution. Many students evaluate
4 5
[12(2x = 3) ax
0

by first multiplying out. (They don’t know the binomial theorem.) More enterpris-
ing students make the substitution u := 2x — 3, evaluate an indefinite integral, and
then substitute back before using the limits of integration:

f12(2x—3)5dx=[6u5du=u6+c=(2x—3)6+c.

However, it is usually simpler to find the appropriate limits of integration in terms
of u (when ¢ goes from 0 to 4, then u goes from —3 to 5) instead of substituting
back. But many students do not change the limits of integration properly, and so
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write
ulo = 4096 instead of [u®])_ _5 = 14896.

(Note the use of subscript u as a reminder that the limits of integration are now
for u.)

4. Differential equations with initial conditions. To solve a first-order differential
equation with initial condition, the procedure followed by nearly all textbooks is to
find a general solution of the differential equation by means of indefinite integra-
tion, and then to find the constant of integrity by substitution. This interrupts the
sequence of steps (equivalences) in the solution. It is better to use definite
integration, as in the following example.

Express x in terms of ¢, where
dx/dt =3x + 6 for all real ¢, and x = —5 when = 2.

The differential equation is both separable and linear. In general, such equations
are best treated as linear equations (see [1], pp. 34-35, 39-40, etc.), since doing so
avoids the error-prone process of getting rid of logarithms. After rewriting the
equation in standard linear form and multiplying by the integrating factor /(=3
(choosing one antiderivative), we obtain e~ dx /dt — 3e ™% x = 63! for all real ¢,
with initial condition. Now we integrate with respect to ¢ from 2 to ¢, using the
corresponding limits —5 and x for x, and obtain

[e‘3’x]8:§;=(2,_5) = [—26_3t]§=2 for all real ¢
e 3y +570=—2¢73 +2¢7% forallreal ¢
ox=—2-3e*"°% forallreal ¢.

In the conventional method, after integrating indefinitely and solving for x in
terms of ¢, we obtain

x=—2+ce* forallzt.

Use of the initial condition then requires “unsolving” the equation for c.
If, however, we solve the equation as a separable equation, we obtain

= 3 dt with initial conditions
x+2

o [In(x+2)]__s=[3t];—, forall¢
<In(x+2)—In(—=3)=3t—-6 forall £(??!!)
ex+2=—-3e>"% forall t (tricky!).

The antiderivative for the left side (without constant) is often written using
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absolute values as

In|x + 2/,

which, however, does not indicate that, because of the initial condition, x + 2 must
have the same sign as — 3. In general, without absolute values,

»1 b
f;dx=ln;, provided that ab > 0.
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A Shortcut in Partial Fractions
Xun-Cheng Huang, New Jersey Institute of Technology, Newark, NJ 07102

The method of partial fractions is the basic technique for preparing rational
functions for integration. It is also a useful tool for finding inverse Laplace
transforms. This method enables us to write a rational function as a sum of simpler
quotients that can be integrated directly or transformed easily by the inverse
Laplace operator.

The basic technique to find partial fractions for a rational function is based on
the method of undetermined coefficients. However, the computation involved in
this method is often tedious. The following is a simple shortcut to expanding
certain rational functions in partial fractions. We believe it is worthwhile to include
this method in the texts.

Shortcut. Let p(x) be a function and a, b distinct scalars. Then

1 ~ 1 1 1
(p(x) +a)(p(x)+b) \p(x)+a p(x)+b|b—a’

This is a special case of a general algebraic identity, and it is really useful. Let us
look at some applications.

Example 1.
X X 1 1 1( X 1 X )
(x2+1)(x>+4) 4-1 x2+1_x2+4)_"3 x2+1) 3(x2+4 '
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