A Pretrigonometry Proof of the Reflection Property of the Ellipse
Zalman P. Usiskin, University of Chicago, Chicago, IL

In any ellipse, the segments from the foci to any point on the ellipse make equal
angles with the tangent. This is equivalent to the reflecting property applied in
whispering galleries. The reflecting property is often proved using equations of lines,
eccentricity, trigonometry, and/or calculus. All of that machinery disguises the
important ideas, namely that this property is fundamentally geometric, not alge-
braic. To use coordinates distorts one’s understanding.

Suppose line m is tangent to the above ellipse at P, and let F’P+ FP =2a.
Since m is a tangent line, any point N on m other than P lies outside the ellipse; so
any other point N satisfies

F'N+ FN>2a.
Let F* be the reflection image of F over line m. Since reflections preserve distance,
FP = F*P and FN = F*N. Since they preserve angle measure, angles 2 and 3 have
the same measure. We now show that P must be on F’F* We do this by showing
that the distance from F’ to F* is minimized by going through P. Putting all the
above together, we see that for all N # P:
F'P+ F*P=F'P+FP=2a<F'N+ FN=F’'N+ F*N.

Thus, angles 1 and 2 are vertical angles and have the same measure. So angles 1 and
3 have the same measure, which was to be proved.

o

Numerical Integration via Integration by Parts
Frank Burk, California State University, Chico, CA

In this note we illustrate how integration by parts can be used to obtain the familiar
rectangular, trapezoidal, midpoint, and Simpson approximations of integrals. Our
approach can serve to further enrich students’ appreciation of the relationships
among these numerical approximations.

Suppose P(x) is a polynomial (to be determined), and f(x) is continuously
differentiable on [a, b]. From integration by parts,

/P’fdx=Pf— /Pf’dx. (1)

If (1) is to provide an approximation to [fdx, we must require P’(x) = 1. So assume
P(x)=x+ B.
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Suppose we let P(x)=x+ B, for x€[a,(a+b)/2], and P,(x)=x+ B, for
x €[(a+b)/2,b). Then

b b)/2 b
/ fdx = f @O 2potix + P/fdx,
a a (a+b)/2

and by (1) applied to [a,(a+ b)/2] and [(a + b)/2, b]:
a+b
2

fabde=-(a+Bz)f(a)+(B,—B,)f( )+(b+B,)f(b)

b)/2 b
— [ pprax— [0 pprax.
a (a+b)/2

2

The two integrals on the right-hand side of (2) are thlc:, errors induced by approxi-
a+
mating [’fdx with —(a+ B))f(a)+ (B,— B,)f( T) + (b + B,)f(b). Note that

if P, and P, are of constant sign on the appropriate intervals (e.g., P, nonnegative),
then

+b)/2 +b)/2 +b)/2
min f’-f(a )/P,dxs/(a )/P,f’dxs max f’~/(a )/P,dx,
la,(a+b)/2] a P la,(a+b)/2] P

and hence (by the Intermediate Value theorem), there is some ¢ € (a,(a+ b)/2)
such that

(a+b)/2 . , (a+b)/2
f" Pfrdx=f (c)f P, dx.
a a

Using (2), we can select B, and B, to obtain the particular approximations
desired.

Rectangular.  [bfdx ~ (b— a)f(a) suggests B,= —b = B,. These values reduce (2)
to

Lbfdx=(b—a)f(a)+j;b(b—x)f’dx
=(b—a)f(a)+f’(cl)/ab(b—x)dx c € (a,b).

Thus,

['fax=(5-a)f(a) + G _2“)

Similarly, [’fdx ~(b— a)f(b) suggests B;= —a = B,, for which (2) becomes

f’(c;) forsome c, €(a,b). (R))

/abfdx=(b—a)f(b)+/ab(a—x)f’dx
=(b—a)f(b)+f’(c2)/ab(a—x)dx ¢, € (a,b).
Hence, '

(b—a)’
2

fabfdx=(b—a)f(b)— f'(c,) forsomec,€(a,b). (R,
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b
Trapezoid. [Pfdx ~(b—a )[j:(a);A suggests —a— B,=(b—a)/2=b+ B,

and B,— B,= 0. Substituting B,= —(a + b)/2 = B, into (2) gives

/abfdx= (%—a)[f(a) +f(b)]+j;(“+b)/2(# _x)f,dx
’ /<j+b)/2( a;b ‘x)f’dx
( )[f(a)+f(b)] +f (xl)( a)’ (2)(1,_0)

for some x; € (a,(a+b)/2) and x, € ((a + b)/2, b). Therefore,

fa”fdx=(b%,“)[f(a)+f(b)]+ (b_g )

[f,(xl) _f'(xz)]

a+b
fora<x1<T<x2<b. (T)

Midpoint.  [fdx ~ (b—a) suggests —a— B,=0=b+ B, and B,— B,=
b — a. Substituting B,= —a and B,= —b into (2) yields

fbfdx= (b—a)f(ﬂ-—b-) + f(a+b)/2(a—x)f’dx+ fb (b—x)f"dx,
a 2 a (a+b)/2

which gives

[rie= - 57) - 5 00 -1 )

at+b
fora<y1<T<y2<b. (M)

b—a a+b
Simpson.  [2f dx ~ ; [f(a) + 4fg—2—) + f(b)] suggests —a — B, =

(b—a)/6=b+ B, and B,— B,=4(b—a)/6. Substituting B,= —(5a+b)/6 and
B =—(a+ 5b)/6 into (2), we obtain

fabfdx_ [f( )+4f )+f(b)] f(l(ﬁb)ﬂ(?—x)f’dx
* f(:+b)/2( a+65b _x)f,dx'
Hence,
f“bfdx (b— [f(a) ’ 4f( ) +f(b)] (S)

[f (z1) = 4f"(2,) + 4f"(23) = f'(24)]
fora<z1<(5a+b)/6<z2<(a+b)/2<z3<(a+5b)/6<z4<b
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It should be noted that with additional smoothness assumptions on f, we can
obtain higher-order error estimates and compare the attractiveness of one method
over another.

Let’s consider another application of our basic idea: estimating the integral of f
in terms of a few discrete values of f, and an integral whose integrand involves f’
and a polynomial. Use B,= —b = B, in (2) to obtain

b b
[adc=(b-a)g(a) + [{(b-x)g’ax, (R)
and then replace g with (b — x)g’. This yields

b b ,
J(b=x)g'dx=(b=a)(b-a)g/(a)+ [(b=x)[(b—x)g]dx
a a
= (b-a)’g/(a)+ [(b—x)'g"dx~ [*(b—x)g’dx,
a a
or,
b 1 2 L 2
f(b—x)g’dx=—(b—a) g'(a)+ —f (b—x)"g”dx.
a 2 2/,
Therefore, upon substitution into (R),
b 1 1
f gdx=(b—a)g(a)+ E(b—-a)zg’(a) + -z—f (b—x)*g" dx.
Repeating this process, we eventually obtain

ngdX= (b—a)g(a) + l'(b—a)Zg’(a)‘l' e +ﬁ(b_a)n—1g(n—2)(a)

- n=1,(n-1
+ 0 1)' f (b—x)"""g dx.
Now replace g(x) with f’(x) and substitute x for b, and ¢ for x. Then

1) = f(a)= [ 1(1) d
“ (= a)fa) 4 b () )

t gy [0 )

and we arrive at

(n-1)
f(x) = f(a)+f( Lxmay+ oot f( i)')( e

1)'f(x—t)" YFO(t) dt,

Taylor’s theorem w1th the integral form of the remainder.
Another seemingly frivolous (but useful in functional analysis) apphcatlon of (R)
is the following: Among all continuously differentiable functions f on [0,1] with
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f(0) =0, is it true that
2
(flfdx) <K [/ dx
0 0
for some constant K?
Beginning with (R), we have [jfdx = [§(1 — x)f’ dx. Therefore,
1 2 1 2
(ffdx) =(/ (l—x)f’dx)
0 0
L 2
<(fla-xira)
0
1 2 1
<[ (1-x)"dx- ’1*d
[=x)ax- [17dx

1 1
= — 72
=3 e

where the second inequality is an application of Schwarz’s inequality. Thus, our
answer is affirmative, with K'=1/3. The interested reader might try to show that
K =1/3 is best possible by showing that there exists a continuously differentiable
function f on [0,1] with f(0) =0 and ( [ifdx)>=(1/3)[¢|f’|? dx.

o

Behold! The Pythagorean Theorem via Mean Proportions
Michael Hardy, University of Minnesota, Minneapolis, MN
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