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We present a new strategy of row reduction to obtain a basis for the left null-
space of a matrix (and, by transposition, one for the nullspace too). The method
can also be extended to solve a linear system, and to invert a nonsingular square
matrix.

Most introductory linear algebra books contain examples and exercises in which
they ask for conditions on the right-hand side of a linear system to ensure
consistency. The usual recommendation is to reduce the system Ax = b by elemen-
tary row operations to a form Ux = ¢, where U is an echelon matrix, and set the
components of ¢ that correspond to the zero rows of U equal to zero. Since ¢ is
obtained from b by elementary row operations, we thus obtain a set of homoge-
neous linear equations for the components of b. It is then natural to ask questions
about this system such as: Are its equations independent and what characterizes its
coefficient matrix?

To avoid the components of b being hidden in ¢ and to obtain their coefficient
matrix explicitly we write the system as Ax = /b and reduce the latter or, equiva-
lently, the augmented matrix [ A|7]. Let us look at an example:

Example 1. Find conditions on b that ensure the consistency of Ax =b with

1 0 -1
—2 3 -1
A=
3 =3 0
2 0 -2

According to the above discussion we can do this by the following reduction:

1 0 -1] 1 0 0 0
-2 3 -1| 0 1 0 0
3 -3 0| 0 0 1 0
2 0 -2/ 0 0 0 1

1 0 -1 1 0 0 0

0o 3 =3 2 1 0 o0

0 -3 3|-3 0 1 0

o 0o 0]-2 0 o0 1

1 0 -1/ 1 0 0 0

0o 3 -3/ 2 1 0 0

o 0 of-1 1 1 0

o 0o 0]-2 0 o0 1
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Thus if we put

the consistency conditions can be written as Mb = 0. Clearly the rows of this M are
independent. On the other hand we know that the equation Ax = b is consistent if
and only if b is in the column space of A, and so the solutions of Mb = 0 must
make up the column space of A. Hence the rows of M must be orthogonal to the
column space of A. It is straightforward to check that in this case indeed MA = O.

||

We can generalize the results of the above example as follows:

Theorem 1. Let A be any real m X n matrix of rank r. Consider the block matrix
[A 1], where I is the unit matrix of order m. This matrix can be reduced by

elementary row operations to a form [g AL/[], in which Uis an v X n echelon matrix

and O the (m — r) X n zero matrix. Then the transposed rows*of the (m — r) X m
matrix M form a basis for the left nullspace of A. M

Proof. For any A as stated, the equation Ax=b is consistent if and only if
b € Col( A). For any b € Col( A) write the above equation as Ax = Ib and reduce

the latter, by elementary row operations, until A4 is in an echelon form [g], with U
having no zero rows. On the right-hand side denote the result of this reduction of
the matrix I by 1@] Thus we get the equations Ux = Ib and 0 = Mb. The last

equation shows that the rows of M must be orthogonal to any vector in the column
space of A, and so their transposes are in the left nullspace of A. Furthermore, the

L
IM

which are invertible. Consequently the rows of M are independent. On the other
hand, since the dimension of the left nullspace of A is m —r and M has m —r
independent rows, their transposes span the left nullspace of 4. W

matrix has full rank, since it is obtained from 7 by elementary row operations,

The construction of Theorem 1 applied to the transpose 4" of A in place of A4
yields a basis for the nullspace of A, as illustrated in the next example.

Example 2. Find a basis for the nullspace of

'We follow the convention of considering the left nullspace of A to be a space of column vectors.
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We row-reduce [ A7 I] as follows:

1 2 1 0 0 0 [ 1 2 1 0 0 0]
2 -1 0 1 0 0 0 —-5| =2 1 0 0
—_—

0 5 0 0 1 0 0 5 0 0 1 0
3 1] 0o o o 1 | 0 -5 -3 0 0 1]

[ 1 2 1 0 0 0]
0 =5 —2 1 0 0
—_—
0 0 —2 1 1 0
| 0o o|-1 -1 0 1]
From here we can read off the matrix M as
[-2 1 1 o
M_[—l -1 0 1]’

whose transposed rows form a basis for Null( 4).
For comparison let us find a basis by the usual method as well:
We reduce A4 to

[ 1 2 o 3
U[O—l 1—1]’

and solve Ux =0, where x = (x,, x,, x5, x,)". We set the free variables equal to
parameters, that is, set x; = s and x, =t Then Ux = 0 becomes x, + 2x,+ 3t=0
and —x,+s—t=0. Hence x,=s—t and x, = —2s—1¢, and so the general
solution is

—2 —1
1 —1
= +1
X=st ol
0 1

resulting in the same basis vectors for Null( A) as before.
Our method seems to be more straightforward, but on the other hand it requires
working with a bigger matrix. M

We can also extend the above procedure to one for solving Ax=b, by
reformulating it as [ 7 1] [ _A,:r] = 0 and finding the left nullspace of [_AbTT].

We can further modify the last idea so as to obtain a new way of computing the
inverse of a matrix. We may solve AX =T for an invertible matrix A by solving the
systems Ax; = e; with the above method, where x, and e, are the columns of X
and T respectively. An efficient organization of this yields the following theorem for
computing A~

Theorem 2. et A be any real, nonsingular n X n matrix. Consider the block
matrix [_“} é], where I is the unit matrix of order n and O is the n X n zero
matrix. We can row-veduce this, witbout exchanging any of the last n rows, to a
Sform [g sz( , in which U is an upper triangular matrix row-equivalent to A. Then
M=4""" n
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Example 3. Find the inverse of

[

Applying Theorem 2 we can do this by the following reduction:

1 —2‘ 1 0 1 =2 1 0
3 40 0 0 10| -3 1
—
-1 0] 0 o0 o -2 1 o0
0 —1, 0o 0 0 -1] o o0
1 -2 1 0
0 10| -3 1
| o o] 4/10 2/10
0 0] -3/10 1/10

Thus

T 4 2
L
A 10[—3 1]"

There seems to be no computational advantage or disadvantage to the proposed
methods, since they require just as many operations as the standard ones. What we
gain in avoiding back substitution, we lose because of the enlarged matrices.

Acknowledgment. The author wishes to thank the referee for suggesting several valuable improve-
ments.

An Application of Number Theory

Professor James C. Kirby (Tarleton State University, kirby@tarleton.edu)
sends the following.

In practicing baseball with my two boys, I found that I was too
predictable in throwing them a fly or grounder. Generally, if 1 threw one a
fly, then I also threw the other one a fly. I sought a (somewhat) random
way of deciding how to do this. I came up with the following procedure,
and it works quite well. Beginning with the day of the week if it is odd, or
the next day if it is even, I throw a ground ball if the integer is a prime and
a fly ball if it is a non-prime. For the next one, I use the next odd integer.
After 99, 1 go to one (hence the reason for non-prime and not composite)
and continue until I get to the number before the starting point. This gives
each one of them twenty-five opportunities with no pattern.

My little girl hasn't yet started softball, so she is not included. One might,
however, consider what would be a good technique for three fielders.

How many fathers use mathematics while playing baseball with their
children? Let me rephrase that. How many fathers know the difference
between a prime and a composite number?
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