(assuming k = 0). Hence, a critical point ¢, provides a local minimum (maximum)
if the distance from g to P, is less (greater) than the radius of curvature at P,.

A graphical approach becomes apparent when we introduce the evolute of C.
Let r be the radius of curvature of C at a point P, and consider the normal line to
C at P, drawn to the concave side. Recall, the center of curvature of C corre-
sponding to P is the point Q on this normal whose distance from P is r. The
evolute E is the locus of points generated by Q as P moves along C. The situation
is depicted in Figure 2.

\ . —\
r P2
C |
a c
Q 0,
E E 0,
Pl
( l
Figure 2 Figure 3

Armed with the evolute and the theorem above, we can visually classify the
critical points of f. Let P, and P, be the points on C corresponding to ¢, and ¢,.
In Figure 3, we see that f has a local maximum at ¢, and a local minimum at ¢,.
This is because the distance from g to P, is greater than the distance from Q; to
P, the latter being the radius of curvature at P,, and the distance from g to P, is
less than the distance from Q, to P,, the latter being the radius of curvature at P,.

A property of evolutes suggested by Figure 3 is that the normal line to C at any
point (drawn to the concave side) is tangent to the evolute. Simmons proves this on
pp. 749-750. In principle, this provides a complete graphical determination (loca-
tion and classification) of the critical points of f by sketching all possible tangent
lines to E passing through g. Each such tangent line is normal to C, the point of
intersection with C determining a critical point of f.

Finally, for interested readers, the curve C in the figures is the spiral r(z) =
(2t cos t,2t sin t). The evolute is easy to calculate and graph with a symbolic-graph-
ing package.

o

Parametric Equations and Planar Curves
Kirby C. Smith and Vincent P. Schielack, Texas A& M University, College Station,
TX 77843-3368

One of the most satisfying fringe benefits of teaching mathematics is seeing
unexpected and intriguing connections between various branches of mathematics
while attempting to help others learn. In challenging students of multivariate
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calculus with problem solving situations outside the ordinary, we devised the
following problem: Determine whether the three-dimensional curve represented para-
metrically by system (1) is planar, i.e., is contained in a plane.

x=1"+1
y=41*-2t—1
z=t1*—1t (1)

We wanted to give the students a parametric representation involving quadratics
in ¢ such that the answer to the question was affirmative. (If not, one would need
only to find four points of the curve and show they were noncoplanar.) But in
considering several different examples, we were surprised to find that each one
represented a planar curve. The obvious conjecture leads to the following alge-
braic—geometric result, which in turn raises questions whose answers exemplify the
interplay between elementary vector geometry and linear algebra: The curve
represented parametrically by system (2) is planar.

x(t)=at*+bt+c
y(t) =ayt*+b,t +c,
z(t) =ast? + byt +c5. (2)

For justification, let ¢,, ¢,, and ¢; be three values of ¢ that yield three
noncollinear points on the curve. (If all points are collinear, the result is obviously
true.) Let Ax + By + Cz = D be the unique plane containing the three points thus
generated. Consider the equation Ax(¢) + By(¢) + Cz(t) =D, or

A(ayt> + byt +c¢,) + B(ayt® + byt +¢,) + C(ast®> + byt +¢;)=D.  (3)

This is an equation in ¢ of degree at most two and having three solutions ¢,, ¢,,
and ¢,. Since a quadratic equation has at most two solutions, (3) must be an
identity; that is, every value of ¢ satisfies (3). Thus, the curve represented by (2)
lies entirely in the plane Ax + By + Cz = D. (Note that this result can be obtained
quickly using more advanced methods of vector calculus; since the third derivatives
of the equations in (2) are each 0, the torsion of the curve is 0, implying that the
curve is planar. Our purpose is to use means accessible to most calculus students.)

Of course, the next question is naturally “Which planar curve is represented by
(2)?” It turns out that a planar curve of the form (2) is either a parabola or a
degenerate case (a line, a ray, or a point). As an illustrative example, in lieu of the
cumbersome general case, consider the parametric equations (1). This curve lies in
the plane 2x —y + 2z = 3. A vector normal to this plane is 2i — j + 2k. Extend this
vector to an orthogonal basis for R3 say {2i +2j—k, i —2j— 2k, 2i —j + 2k}.
(Note that the first and second vectors are thus parallel to the plane containing the
given curve.) The corresponding orthonormal basis for R® is {3i + Zj — 1k, +i—
2j — 2k, 2i — 1j + 2K). The associated orthogonal matrix is

Il

WY W= Wl
|

W= W W[
|

W W[ W[
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Curve (1) may be written in matrix form

x 1 0 1] [¢?
yl=1{4 -2 -—-1|-|¢
z 1 -1 0 1

Multiplying both sides of this equation by the orthogonal matrix K, we obtain
x' X 3 -1 0 t?
yVi=K-|y|=|-3 2 1|t
z z 0 0 1 1

b

so that, in the new x'y’z’ coordinate system, the curve (1) has parametric equations

x'=3t>—1¢
y==3t24+2t+1
Z'=1

Similarly, with respect to a new x'y’z’ coordinate system, the general curve (2)
has parametric equations of the form

x'=djt? + bt +c)

Y =a,t*+ byt +c)

z'=cj.
So the identification of our curve is reduced to that of the curve parameterized as

r .2 ’

x'=ait*+ bt +cf

Y =da,t*+ byt +c) (4)
lying in the plane z’ = c;. We can accomplish this identification through either of
two equivalent methods, one algebraic and one geometric.

Method 1 (algebraic). Adding suitable multiples of the two equations, we can
eliminate the t? terms to obtain a linear expression for ¢ in terms of x’ and y'.
Substituting this expression into the first equation in (4) yields a quadratic in x’
and y’ that has discriminant 0, so that our curve is a parabola or one of its
degenerate cases.

Method 2 (geometric). By a suitable rotation of the x’y’ axes parallel to this
plane, we can put the planar curve (4) in the form

2 ’
x"=ajt + bt +cf
y' = bt + ¢},
(Geometrically, the required rotation above is a counterclockwise rotation through

an angle of 6, where tan 6 = da’,/a}.) We can now eliminate ¢ easily to show that
our curve is indeed a parabola, or one of its degenerate cases.
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