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Reflection Property of the Ellipse and the Hyperbola
Michael K. Brozinsky, Queensborough Community College, Bayside, NY

Here is a polar coordinate proof of the known fact that the focal radii of an ellipse
(hyperbola) make equal angles with the tangent. In other words, sCa = < in Figure
1 (Figure 2). Our proof, using a polar coordinate system at each focus, nicely
combines a number of trigonometric notions and can therefore be a good review (or
enrichment) project for calculus students.

Assume that focus F is p units to the left of one directrix, and focus F” is p units
to the right of the ellipse’s other directrix. Then the polar equations of the ellipse
relative to poles F and F’ are
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respectively. From the law of sines in triangle F’PF, we also have

2c(sinf + sinf")

2a=r+r = Sn(0—0) (2)
Since e = ¢/a, one can always recast (2) as
sin(f — 8)
"~ sinf +sinf’ - )

Now observe that a = 8 if and only if # — ¢’ = ¢. Since ,¢y’ €[0, 7], this is
equivalent to the requirement that —tany’ = tany. In polar coordinates, it is well
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r+r=2a |F'F|l=2c
Figure 1.

A 4

r—r=2a |F'F|=2c
Figure 2.

known that the counterclockwise angle y between the radius vector and the tangent

. . . _ r .
line is given by tany = 570 Yk Thus, using (1),
_ 1+ ecosd /_ 1—ecosf’
tany = esinf ’ tany esinf’ )

Using the identity for sin(4 + B), it is easily verified that —tany’ =tany is
equivalent to

_ sinf —sin§’
N sin(f +6") - ®)
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But (5) is true by virtue of (3) and the identity
sin(4 + B)sin(4 — B) = sin’4 — sin’B.
The polar coordinate proof of the hyperbola’s reflection property is similar and

therefore left to the reader. (Note that the branch of the hyperbola not encompass-
ing F’ is generated by negative values of r'.)

o

A Sequel to “Another Way of Looking at n!”
William Moser, McGill University, Montreal, Canada

In the TYCMJ’s November 1980 Classroom Capsules Column, Davis Hsu observed
that 1/n! is the content (volume) of the n-dimensional simplex determined by

X +x,+ - +x,<1, x;20(1<i<n).
Going a step further, we show that the content of the polytope P, determined by

x| 4 x| + - oo+ x|+ |x, x4+ - +x,| <2

is (Zn") /n!. Figures 1 and 2 depict P, and P;, respectively.
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Figure 1. Figure 2.

In 2-space (the plane) there are 4 quadrants. In 3-space there are 8 octants. In
n-space there are 2" “octants.” Indeed, for any k (0 < k < n) there are (Z)

octants . . . one for each choice of the k coordinates that are nonnegative (the other
n — k coordinates are nonpositive). For example, one such octant with k¥ nonnega-
tive and n — k nonpositive coordinates is determined by

x>0 (1<i<k) and x;<0 (k+1<i<n). )]
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