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Strings of Strongly Composite Integers and Invisible Lattice Points
Peter Schumer, Middlebury College, Middlebury, VT

Many of us are familiar with the result that there are arbitrarily large gaps between
successive primes. The proof runs as follows: For any positive integer n, consider
the sequence of n consecutive numbers (n+ 1)1 +2, (n+ D! +3,...,(n+ 1! +
(n+1). Since j|(n+ 1)! +j for each j=2,...,n+1, we have constructed a string
of n composite numbers. But is this sequence the best one we can construct?

In our sequence above, some of the numbers may be just barely composite, i.e., a
product of two distinct primes or the square of a prime. Also, the construction does
not preclude the possibility of another string of » composites made up of smaller
positive integers. Recently I discovered a construction that generates arbitrarily long
strings of strongly composite numbers; that is, each number has at least a prescribed
number of prime divisors. Furthermore, if the primes are specified, the method
ensures that the numbers generated are as small as possible. Let us state the result
formally:

Theorem 1. For any given n and k there is a string of n consecutive composite
numbers each divisible by at least k distinct primes.

The proof relies on the Chinese remainder theorem, which I now state for
reference:

Chinese Remainder Theorem. Suppose that the positive integers my,..., m, are
pairwise relatively prime and let b,,..., b, be arbitrary integers. Then the linear
congruences

x = b, (mod m,)
x=b, (mod m,)

x=b, (modm,)

have a simultaneous solution. Moreover, the solution is unique modulo m, --- m,.
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Recall that x = b; (mod m;) means that m,|x — b; or equivalently that x and b,
have the same remainder on division by m;. The uniqueness condition means that if
x and y are two solutions to the system of congruences then x =y (mod m, - - - m,).
Now to the proof of the theorem:

Proof of Theorem 1. Let p, denote the rth prime number. So p, =2, p,=3,
py=5, etc. Let my=p; -+ p, My=p;, Py, and in general m;=p; 1)1,

<« py for i=1,..., n. Now consider the system of linear congruences
x= —1 (mod m,)
x= —2(mod m,)
x=—n (modm,).

Since the moduli are pairwise relatively prime, the Chinese remainder theorem
guarantees a solution for x. But then m,|(x + 1), m,|(x +2),..., and m,,|(x + n).
Hence x +1,x+2,..., x + n is a string of n consecutive composite numbers each
divisible by at least k distinct primes. This completes our proof.

If we replace —1,—2,...,—n in the linear congruences by the numbers in
another arithmetic progression with common difference d, then we see there is an
arbitrarily long string of strongly composite numbers with common difference d.
Similarly we can construct strings of strongly composite numbers whose successive
differences form a geometric progression, a Fibonacci sequence, or any other
favorite string of numbers. (For example, see solution 345 in the March 1989 issue
of The College Mathematics Journal.)

The following example shows how to construct the string guaranteed by Theorem 1.

Example. We will find five consecutive integers with the ith integer divisible by the
ith prime for 1 <i<5 (so n=195 and k =1). We need to solve

x= —1(mod2)
x= —2(mod3)
x= —3 (mod5)
x= —4(mod7)
x=—5(mod11).
We seek a solution of the form x = —1¢, — 2¢, — 3¢; — 4¢, — 5S¢ where for each

i, ¢,;=1 (mod p;) and ¢;=0 (mod p;) for j+i. For example, we want c¢;=0
(mod?2), ¢;=0 (mod3), ¢;=1 (mod5), ¢;=0 (mod7), and ¢;=0 (mod11). So
462|c, since 462 =2 X3 X7 X 11 and ¢; =1 (mod 5). Simply take multiples of 462
until one is congruent to 1 (mod 5). We readily see that ¢; =3 X 462 = 1386 works.
(Alternatively, since 5 and 462 are relatively prime, Euclid’s algorithm produces
integers a = 185 and b =2 such that 5a —462b=1. Then ¢;= —462b=1-5a=
—924 also works.) Similarly we obtain ¢; = 1155, ¢, = — 770, ¢, = 330, and ¢5 = 210.

Now x = —1¢; — 2¢, — 3¢5 — 4¢, — 5¢5 = — 6143 is one solution of the system of
congruences. Since all solutions are congruent modulo 2 X 3 X 5X 7 X 11 = 2310,
the smallest positive solution is x = — 6143 + 3 X 2310 = 787. So 788, 789, 790, 791,
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and 792 are the smallest five consecutive numbers divisible by 2, 3, 5, 7, and 11,
respectively. (However, they are not the smallest five consecutive composite num-
bers. That distinction belongs to 24, 25, 26, 27, and 28.) We could obtain infinitely
many such sequences by simply adding multiples of 2310 to each member of our
sequence.

We now turn our attention to a nice variation of this method to lattice points,
which appears in Apostol’s book [Introduction to Analytic Number Theory,
Springer-Verlag, 1976, 119-120]. A lattice point in the plane is a point (a, b) where
a and b are integers. An observer at the origin will not be able to see some lattice
points; for example, (4, 6) is hidden behind (2, 3). In fact, a lattice point is visible
from the origin if and only if @ and b are relatively prime.

Theorem 2. The set of lattice points in the plane visible from the origin contains
arbitrarily large square gaps. That is, given any k > 0 there is a lattice point (a, b)
such that none of the lattice points (a+r,b+s), 1 <r<k,1<s<k, is visible from
the origin.

We will construct such an invisible square for £ = 3 that gives the full flavor of
the proof in Apostol’s book. In fact the proof could easily be extended to lattice
points in three or more dimensions. Our construction is also instructive in showing
the disparity between a neat theoretical solution and the messy details inherent in
working out a concrete example.

Example. Let k = 3. Consider the 3 X 3 matrix M whose entries are the first nine

primes:
2 3 5
M=} 7 11 13].
17 19 23

Let a, be the product of all primes in the ith row and let b, be the product of all
primes in the ith column. So a; = 30, a, = 1001, a, = 7429, b, = 238, b, = 627, and
by = 1495. The numbers a; are pairwise relatively prime, as are the b,. Note that
a,aya, = bbby = 223092870.

Next consider the system of congruences

a=—1(mod a,)
a= -2 (mod a,)
a= —3(moda,).

By the Chinese remainder theorem this system has a solution that is unique
modulo 223092870. Proceeding as in the previous example and with some computer
assistance, we obtain the least positive solution a =119740619. Thus 30|119740620,

1001119740621, and 7429|119740622.
Similarly, the system

= —1 (mod b,)
= —2 (mod b,)
= —3 (mod b,)

leads to the least positive solution b = 121379047. Hence 238|121379048,
627]121379049, and 1495]121379050.
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Now consider the 3 X3 square with opposite vertices at (a+1,b+ 1) and
(a+ 3,b+ 3). None of the points in the square is visible from the origin. Since
a= —r (moda,) and b= —s (mod b,) for 1 <r<3,1<s<3, the prime in row r
and column s of M divides both a+r and b+ s. Hence a+r and b+ s are not
relatively prime, and thus the lattice point (a + r, b+ s) is not visible from the
origin.

This particular 3 X 3 square of invisible lattice points is far from the origin.
Perhaps we can find another 3 X 3 square of invisible lattice points that is closer by
selecting different primes, or the same primes in a different order, for the entries
of M.

If we use the first sixteen primes to construct a 4 X 4 square of invisible lattice
points, we would have to make calculations modulo 2 X3 X --- X 53 =
32589158477190044730. Such a project is beyond the courage of this author!

o

Exploring the Volume-Surface Area Relationship
Keith A. Struss (student), Rose-Hulman Institute of Technology, Terre Haute, IN

At first glance it appears to be a coincidence that the surface area of a sphere may
be found by taking the derivative of its volume function. However, as we shall see, a
particular mathematical relationship often holds between the volume of an object
and its surface area—namely,

dV = Adr, (1)

where dV is the increase in volume of the solid that would result from coating it
with a uniform layer of thickness dr, and A is the surface area of the solid. Of
course, dV and dr are infinitesimals. To see that this is reasonable, recall from
elementary calculus that the volume of some solids may be computed by using
cross-sectional areas as follows

V(x)=faxA(u)du. (2)

Now, let A(7) denote the surface area of the solid when it is uniformly coated by a
coating of thickness 7. A natural analogue of (2) is

V(T)=/O’A(u) du (3)

where V(1) is the additional volume arising from coating the solid; therefore
differentiating and evaluating the expression at =0 yields

dv

e R0} @

=0

which is just another way of expressing (1).
Let’s verify this for the sphere. Since V' = (4/3)7r3, we know that

av
dV = —dr=4nrdr. (%)
dr
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