For example,

A =Hy-H=1+i-Z¢l b2 Lo 1 _ 2
Wm T It 37475 6 3n—-2 3n-1 3n

the (3n)th partial sum of the series

1 2 1 1 2
3
=14 -4 —gp-——Z ...
A + 573 + ) + 576 +
To show that A® converges, we group the positive pairs and decompose the negative
terms, as follows:

1 1 1 1 1
3
=(1+=)—([=-+=— =)=,
A (+2) (3+3>+(4+5)

displaying A* as an alternating series whose terms decrease in absolute value to zero.
The series A® therefore converges to a limit. Consequently, (A3,), a subsequence of its
sequence of partial sums, converges to the same limit. Arguing as in the original case,
we find that

A} — In3 and, therefore, A*> — In3.

To see the pattern more fully, note that

1 1 3 1 1 1 3
A3n=H4,,—H,,=1+-2-+§—Z+'5-+-6'+7“§+"'-

Let A* denote the series whose (kn)th partial sum is A},. The proof that A* — Ink

goes the same way as the one just given for k = 3. (These extensions were noted in a
successor manuscript to [2], which however died on the editor’s desk.)
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Using Differential Equations to Describe Conic Sections

Ranjith Munasinghe (rmunasinghe @ wvutech.edu), West Virginia University Institute
of Technology, Montgomery, WV 25136

“A parabola is the set of poinfs in a plane that are equidistant from a fixed point F
(called the focus) and a fixed line (called the directrix).” This definition is included
in many calculus texts that have a chapter on analytic geometry. Using basic algebra

VOL. 33, NO. 2, MARCH 2002 THE COLLEGE MATHEMATICS JOURNAL 145



it is easy to show that the parabola with the focus F (p, 0) and the directrix x = —p
has equation y?> = 4px. In some texts, students are asked to show that a ray of light
emitted from the focus of a parabola is reflected in the direction perpendicular to the
directrix. Using elementary differential equations, we show that this reflection property
alone characterizes the parabola. See [2, p. 714] for a different proof that uses polar
coordinates and differential equations.

Let C be a smooth curve in the plane such that any light ray emitted from F that
strikes C is reflected parallel to the x-axis. Assuming that the angle of incidence is
equal to that of reflection, we find a differential equation that governs the shape of the
curve C. (See Figure 1.)

P(x,y) 444

j( 24 x

\F .0

Figure 1.

Stl)lpPOSC 4 — tan A. Then tan2A = et = 72, and substituting £ for tan A we
obtain

dy\* dy
y(a) +2(X*P)E;‘“)’—O- (D

To find an equation for the curve C, we solve (1) for % to get the two equations

dy _—x=-p£vyx-p?’+y

I 2

Since the right-hand expressions are homogeneous functions of x—f; we use the substi-
tution u(x) = % to transform (2) to separable equations. Thus,

-1+ V14 u?

ta-p
u — —_— =
* de u

3)
and separating variables yields

1

u
du=f dx.
/~-u2—1:l:\/1+u2 X—p
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Observe that

u u(l +u®)~12
du = — ————————du:—ln‘\/1+u2:}:l'+C.
/—uz—lzl:\/1+u2 Ji+urFx1l

Therefore, the equations (3) have respective solutions

k? 2k
ut = + (k =€),
(x—p? x-p
and the corresponding solutions of (2) are
) k
Y =4%(x-pE5). 4)

Note that for each real number &, the equations (4) describe a pair of parabolas with
vertices Vi (p — %,0) and V2 (p + £,0).

Y @, k) Y ok

X X

i\ F@o Fp,0) %

(p’ —k) (p’ ‘k)
y? =2k(x - p)+k’ ¥ =—2k(x—p)+ K

Figure 2.

To complete our discussion, we consider when the initial value problem (IVP) given
by % = f(x,y) with y(xo) = yo has a unique solution. Suppose that f(x, y) and
fy(x, y) both are continuous on the region R = {(x,y) :a <x < b, ¢ <y < d} that
contains (xo, o) in its interior. Then there is an 2 > 0 and a unique function y = y(x)
defined on (xo — h, xo + h) that is a solution to the IVP. (See, for example, [1, p. 13].)
By the preceding remarks, it follows that the initial value problems

dy —(x=p)E£y/x-p*+)*
dx

with  y(xo) = yo (yo # 0)

have the functions defined by respective equations y*> = 4+2k(x — p + ’5‘) as their
unique solutions. If y, = 0, the equations do not define functions on an open interval
centered at xo. However, the two equations y? = +2k(x — p & g) with the condition

¥(xo) = 0 yield the parabola y? = 4(p — x,)(x — xo) that passes through (xo, 0).
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We invite the reader to show that the ellipse and the hyperbola are characterized by
their reflection properties by investigating the following exercises.

Exercises

1. Light rays emitted from the point F (¢, 0) (¢ > 0) strike a plane curve C and
reflect back through the point F, (—c, 0). Assuming that the angle of incidence
equals the angle of reflection, show that the differential equation xy(dy/dx)* +
(x* — ¢ — y*)(dy/dx) — xy = 0 describes the shape of the curve C.

2. Show that for any a > 0, the curve x2/a* + y?/(a* — ¢?) = 1 satisfies the equa-
tion in Exercise 1. Notice that for a > c, the curve is an ellipse with foci F; (¢, 0)
and F, (—c, 0). And for a < c the curve is a hyperbola with the same foci.

3. Discuss the uniqueness of the solutions in Exercise 2, for the differential equa-
tion in Exercise 1.

The method we used to solve the differential equation (1) does not work for the equa-
tion in Exercise 1. Can you find a way to solve it?
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Sums of Roots and Poles of Rational Functions

Paul Deiermann (pdeiermann @semovm.semo.edu), Southeast Missouri State Univer-
sity, Cape Girardeau, MO 63701

Consider rational functions L  expressed as % Q) + 7 R(") . For the examples
x3 + 3x? 6x +8 6x2—5 3 7/2
i 44 22FC  and —3x—2— ,
Pox_2 TTUTET T ™ i T T o

we see that the sum of Q’s roots equals the sum of p’s roots minus the sum of g’s
roots. This illustrates an interesting tidbit concerning rational functions that probably
falls under the category of a known, but not well-known, fact among those of us in the
trenches.

Let p(x) and g(x) be polynomials with no common factors and with real coeffi-
cients, where the respective degrees of p and g are n and m with n > m > 0. Using
polynomial long division, we can write ”g)) =0+ 78 +9 with the degree of R(x)
strictly less than the degree of g(x). Then the sum of Q’ s roots equals the sum of p’s
roots minus the sum of ¢’s roots.

Proof. Since we are interested only in the roots and poles, we may assume that the
leading coefficients of p(x) and ¢(x) (and hence of Q(x) also) are unity. Let

px) = H (x—a)=x"— (Zak> "N O™ =x" — A" 4+ 0" D),
k=1 k=1
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