probability of the response NO, and X, is the number of NO responses in a
random sample of size n, then

1
py=P(NOand TAIL) = —(1 - p). (3)
Solving equation (3) for p, we have p =1—2p,. An estimator of p, p,, is given by

A XN
pr=1-2p,=1-2{ 2|
n

where X, has a binomial distribution with mean np, and variance np,(1 — py). As
before, the estimator p, is unbiased. Furthermore,

4 4
Var(f’z) = ?Var( XN) = anN(l _PN)

4 (1-p) A+p) (A-p)+p(1-p)
_e - : (4)
n 2 2 n
The variance is again larger than would be the case if the question were asked
directly.

Comparing Var( p,) and Var( p,) given in equations (2) and (4), we see that for
p <1/4, Var(p,) <Var(p,). In this case, p; is the better estimator of p. For
p >1/4, p, is the better estimator. For p = 1 /4, the variances of the two estimators
are the same.

The normal approximation to the binomial enables us to use the estimators p,
and p, to obtain approximate (1 — «)100% confidence intervals for p (see Menden-
hall, Introduction to Probability and Statistics, Tth ed., Duxbury, Boston, 1987 for a
discussion of interval estimates of p). The appropriate formulas for p, and p,,
respectively, are

i +p(1-py)
n

S

1 * Za/2

and

(1 _132) +ﬁ2(1 _ﬁz)
p,+Z
Drx a/Z‘/ n

where Z, ,, is the value of the standard normal variable with («,/2)100% of the area
under the curve to its right.

o

Power Series and Exponential Generating Functions
G. Ervynck and P. Igodt, Katholieke Universiteit Leuven, Kortrijk, Belgium

The following problem originated during a working session with first year under-
graduates:

Let P (n) denote a kth degree polynomial, with real coefficients, in the
variable n. Find

Pi(n)
n!

i::o x". (1)
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(Of course it was noticed that (1) is everywhere convergent since, by the
ratio test, it has an infinite radius of convergence.)

The solution to this problem yields two complete families of power series (see also
Application 1) for which the computation of the sum is possible in quite a nice way.
Moreover, this exercise contains some aspects of linear algebra and algorithmic
developments, making it an attractive enrichment project for undergraduate stu-
dents.

As a starting point for summing (1), let P,(R) denote the (k + 1)-dimensional
real vector space of polynomials of degree less than or equal to k. We take as a basis
for P, (R) the set { f,, f1,..., fi }, where

f0=1’ fl(x)=x’ fz(x)=x(x_1)’-~, fk(x)=x(x_1)”'(x_k+1)'

(Students should verify here that this is indeed a basis.) Then P,(x) can be written
as a linear combination of the basis elements

k
Pi(x) = X Nifi(x). )
i=0
Let us use this expansion to sum series (1). Specifically,

‘§0>‘ifi(n)

0
x"= Z —_—x"
n=0

3 Mx"}.

Pi(n)
n!

0
)y
n=0

(One can ask the students why the X’s can be interchanged here.)
Now, let us have a look at

!
n=0

For i = 0, we have the series representing e*. For i € {1,2,..., k}, we have f,(n) =0
for 0 <n<i—1. Thus,

= fn) _Em xt o m
;Eo T _Ei(n—i)! = nz=:i (n—i)! - xe
So, consideration of i € {0,1,..., k} yields
P (n)

k
x"= { Z}\ixi}e". (3)

i=0

This means that in order to sum (1), we need only find the coordinates
{Ags AL, Ay} of Pi(n) with respect to the basis { f;,..., f; }. This can be done
recursively, via (2), by equating coefficients of like powers in the expansions of

an*+a,_n* '+ - tamt+ag=Ag+An+A,n(n—1)
+ - A n(n—=1) - (n—k+1),
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or by the algorithm
i-1

P(i) = X Af5(0)
j=0

i!

Ao=P,(0) and A,= (i=1,2,..., k). (4)

Application 1. Series (3) is known in the literature as the exponential generating
function for the sequence {P,(n): n=0,1,2,...}. Therefore, let us consider an
application of (3), based on the relation between the ordinary generating function
A(x)=X%_ya,x" of a sequence {a,} and the exponential generating function
(o] an
E(x)= ,E'o pri
of {a,}. The relation

A(x) = /Oooe‘sE(xs) ds  (]x| < radius of convergence of 4(x)) (5)

is readily derived by noting that n! = [§°% ~°s"ds, and recasting A(x) as

0 ol x"\ roo 0 ® g
A(x) = a x"= a | — e *s"ds = e’ —Z(xs)"| ds.
0= Epot= B [Feann o] £ ]«

n=0

To compute A(x) for the sequence { P, (n)}, substitute E(sx) obtained from (3)
into (5) (it should be stated that here A(x) converges for |x| <1):

ook .
A(x)=f0 goxi(sx)'esxe-s¢ (—1<x<1)

k Y
=Y }\ix’(f slesx=D ds). (6)
i=0 0
Now, it is straightforward to verify that

—-1)"* i
foosies("‘l)ds= )
0

(x _ 1)i+1 ’
and that (6) therefore can be written as
k (_1)1+11' .
A(x) = Y A ——7x" (7)
i—o (x—1)

So again, computation of the A’s is sufficient to sum A(x)=X%_,P,(n)x".

Example. To sum X_,(n?+ 4n)x" (where |x| <1), use (2)
n*+4n=5n+n(n—1)=0-f(n) +5-fi(n) + fo(n)

to obtain Aj =0, A, =5, A, = 1. Then (7) yields

5x 2x?

(x-1?7 (x-1)°

o0
Y (n?+4n)x"=
n=0
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Application 2. As another apphcatlon of (3), consider the problem of computing
higher order derivatives of (L*_,A,x")e*. Using Leibniz’s rule, one can make explicit
computations in examples; however, finding a general formulation is not easy. Let
us use identity (3) as another way of approaching this question. Toward this end,
begin with

olgpeb-o{528

n=0

n(n—l) c(n—j+1)x"~

£

P k(" 7)
= ———(n+j)---(n+1)x"
n=0 ( + )'
& P(n+j)
-y B ®
noo n!
Now let’s repeat our earlier argument, that began with (2) and ended in (3), for
P,(n +j). In particular, there exist scalars {ao, ay,...,a;} such that

P(n+j)= Z a;f,(n)

and
n=0 n! Z aix,) " (9)
Therefore, (8) and (9) yield

()}~ £ o

(Note that both polynomial parts have the same degree, since A, #0 implies
a, #0.) In other words, to compute the jth derivative of (L¥_ A,x")e* for given
{Aos }\1, , A, )}, proceed as follows: define P,(n) =YL¥_(A,f.(n), express P, (n+j)
as Xr_oa; f (n) and use the computed scalars {a,...,a;} in (10).

Example. To compute D/(x*e*), we first observe that A, =1 and A, =0 for i # k.
Therefore, P.(n)=1)f,(n)=n(n—1)---(n—k+1), and we seek scalars

{ag, ay,..., ak} such that P,(n +j) can be expressed as
(n+j)(n+j—1)---(n+j—k+1)
=aqytan+ - +an(n—1)---(n—k+1). (11)

For small k, this can be solved by equating the coefficients of like powers of n. For
large k, we can use a computer to give

a0=Pk(j)
o =P (j+1)—Pj)
etc.

(In general, ag = D/{(X*_ A, x")e*}(0) = P,(j) can be seen directly from (9).)
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A particular case in point is k=3 and j = 5. Here we easily solve (11),
(n+5)(n+4)(n+3)=ay+an+an(n—1)+ayn(n—1)(n-2),
and obtain
D3(x%*) = (60 + 60x + 15x2 + x3) e*.

For further details and related applications of (3), see Richard Brualdi’s Introduc-
tory Combinatorics, North Holland, New York, 1983; E. S. Page and L. B. Wilson’s
An Introduction to Computational Combinatorics, Cambridge Computer Science
Texts 9, 1979; and John Riordan’s An Introduction to Combinatorial Analysis, John
Wiley & Sons, New York, 1958.

Generalizations of a Complex Number Identity
M. S. Klamkin, University of Alberta, Edmonton, Alberta and V. N. Murty,
Pennsylvania State University, Middletown, PA

A recurring exercise that appears in texts on complex variables is to show that if w
and z are complex numbers, then

lw| + |z| =|(w+2)/2 = Vwz|+]|(w+2)/2+ Vwz]|.

In problem 368, this journal, the first author asked for a generalization to three
complex numbers. In this note, we give further generalizations to any number of
variables and to any dimensional Euclidean space by replacing the complex num-
bers by vectors.
First, we can simplify the identity by getting rid of the bothersome square roots.
Letting w = z2 and z =z2, we get
2|z + 12} = |21 = 2o+ |2 + e))

Geometrically, we now have that the sums of the squares of the edges of a
parallelogram equals the sum of the squares of the diagonals. Consequently, by
considering a parallelepiped, one generalization is that

2
4{|Z1|2+ |z, + |23|2} =|z1+ 2+ 232 + |z 2, — 24
+|zl—zz+z3|2+|—zl+z2+z3|2. (2)

Here, z,, z,, z; can be complex numbers in the plane or vectors in space. For a
proof, assuming the z, are vectors, just note that

2 _ _ 2
|21+ 2= 23| = (2, + 2, — 23)
=z2+z2+22+42z -2, 2z,-2,— 22, 25, etc.

Geometrically, we have that the sums of the squares of all the edges of a paral-
lelepiped equals the sums of the squares of the four body diagonals. Also to be
noted is that (1) is the special case of (2) when z;=0. A generalization to
n-dimensional space (for an n-dimensional parallelepiped) is immediate, i.e.,

rY=Y(tntnt - £2,), (3)
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