We have not nearly described all the classes of functions that answer our original
question; many other classes exist. Students who discover, generalize, and classify
such vector space functions are likely to develop a deeper understanding of linear
transformations, and will gain an appreciation of the open-ended nature of mathe-
matical research.
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On “Rethinking Rigor in Calculus...,” or Why We Don’t Do Calculus on the
Rational Numbers

Scott E. Brodie (brodie@msvax.mssm.edu), Mount Sinai School of Medicine, New
York, NY 10029

In a recent “Point/Counterpoint” in the American Mathematical Monthly
([1],[2D, it was suggested that the basic theorems on continuous functions and their
derivatives (the Boundedness Theorem, the Extreme Value Theorem, the Intermedi-
ate Value Theorem, and, especially, the Mean Value Theorem) be omitted from the
introductory calculus course. Reasons given were that “the origin of the Mean Value
Theorem in the structure of the real numbers ... is too difficult for a standard
course”; that these discussions are “the sort of thing that gives mathematics a bad
name: assuming the nonobvious to prove the obvious”; that perhaps there is no
“need for formal theorems and proofs in a standard calculus course”; and that, in
any event, one shouldn’t “prove things in more generality than is necessary; even
analysts don’t usually deal with the discontinuous derivatives allowed by the Mean
Value Theorem.”

I demur. Without commenting on the pedagogical issues, I would like to point
out that this program risks serious misdirection of the mathematical intuition of its
students. In particular, I submit that the notion that these basic theorems are
“obvious,” save for obscure subtleties raised only by bizarre, pathological functions
(which are scarcely encountered in practice) is incorrect.

A quick glance at the standard proofs of these basic theorems on continuous
functions shows that they represent direct (or nearly direct) applications of the
Axiom of Completeness as applied to their domain—that is, they reflect the
existence of particular limit points guaranteed by the Axiom of Completeness, acting
on the domain of a continuous, real-valued function. One way to see what is going
on is to consider continuous functions on an incomplete domain, say the set of
rational numbers, Q.

Of course, it is important to remember that continuity depends only on the points
where a function is defined — that is to say, on the points in the domain of the
function. Many of the examples that follow have been chosen to highlight the
“hole” in the rational number line at 1/ V2, in recognition of the historic role of V2
as perhaps the first number shown to be irrational. Note that it is possible to
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encounter this difficulty even without explicit mention of the irrational number V2 .
To begin with, a non-degenerate, closed, bounded interval of rational numbers is
not a compact set (that is, the Heine-Borel theorem fails over Q):

Let U={x€[0,1] N Qlx* < 1},

Let V={x€[0,1] nQlx*> 3};

Then the open cover {[0, u),(v,1], u € U, v V} of [0,1] in Q does not have a
finite subcover.

Theorems that depend on the compactness of a closed, bounded interval thus
also fail over Q. For example, a function continuous on a closed, bounded interval
of rational numbers need not be bounded. For example, consider fx)=
1/(2x? — 1)?, which is continuous on [0,1] N Q. This function (see Figure 1) also
serves as a counterexample to the theorem (valid over R) that a function, continu-
ous over a closed, bounded interval, is uniformly continuous there.

X

Figure 1. j(x)=‘1/(2x2— 1)2.

The Extreme Value Theorem is usually deduced by yet another application of the
Axiom of Completeness, once the initial fact of boundedness has already been
deduced. Clearly, the Extreme Value Theorem fails if the function is not itself
bounded (as seen in the example above), but it may fail even in the case of a
bounded function continuous on a closed, bounded interval of Q: Consider (see
Figure 2) the function f{x) =1 —(2x* — 1), which fails to attain its supremum of 1
on the domain [0,1] N Q.

X

\
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Figure 2. f(x)=1-(2x*—1)%



The Intermediate Value Theorem is a direct reflection of the fact that a closed
interval of real numbers is connected. (The theorem can be proved by “hammer and
tongs” without mentioning connectedness, but such proofs only amount to a
recapitulation of the proof of connectedness in the more specific context.) On the
other hand, a non-degenerate closed interval in Q is not connected. For example
the sets U and V given in the first example constitute a disconnection of the interval
[0,1] N Q. It is thus no surprise that the intermediate value theorem fails over Q:
consider the function Ax) =1/(2x? — 1), which is continuous on [0,1] N Q, satis-
fies f(0)= —1, f(1) =1, but fails to satisfy f(x)=0 anywhere on [0,1] N Q (see
Figure 3).

Figure 3. f(x)=1/Q2x*—1).

Indeed, the Intermediate Value theorem may fail over Q even for a polynomial:
for example, the polynomial function f(x) = x* — 2 satisfies f(0) = —2, f(2) = +2,
but there is no rational number x for which x* —2=0.

Finally, Rolle’s theorem, and hence the Mean Value Theorem, fails on Q as well.
For example (see Figure 4), the function f(x)=1— V4x*—4x*+ 1 is continuous
on [0,1] N Q and differentiable on (0, 1) N Q; indeed the derivative is continuous at
every point of (0,1) N Q. Though f(0) = /(1) = 0, there is no x where f'(x)=0.

Even the watered-down “Increasing Function Theorem,” proferred in [1] as a
more sincere replacement for the Mean Value Theorem, fails over Q: consider (see

Figure 4. flx)=1—Vix®—4x?+1.
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Fi . = —,
igure 5. f(x) e

Figure 5) the function f(x)=1/(1 —2x?) over the interval [0,1] N Q. The deriva-
tive is positive and even continuous on [0,1]1n Q, but the function is not increasing.

There are no functions here more exotic than polynomials, rational expressions,
and square roots—surely functions dealt with regularly by “analysts” and even
ordinary users of the calculus. The familiar theorems on continuous functions fail,
not because there is anything pathological about them, but because the domain has
been changed from R, which is complete, to Q, which is not. These examples
suggest that an attempt to separate the familiar properties of continuous functions
from the underlying structure of the real line is unlikely to succeed.

The great theorems of the calculus are not necessarily “obvious”—otherwise it
would not have taken nearly 2,000 years of mathematical effort to discover them or
their proofs. To hide from our students the persuasive arguments by which we have
come to believe them is to do them a disservice.
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A Far-reaching Formula
Kil S. Lee (killee@mankato.msus.edu), Mankato State University, Mankato,
MN 56002

It is well known that the formula for the area of a trapezoid—the average length
of the parallel sides times the perpendicular distance between them—gives the
areas of squares, rectangles, parallelograms, and triangles. In Figure 1, b is the
distance between the parallel lines / and m.

It is not so well known that the formula can be used to find other areas. In Figure
2, the length of the radius of the circle is similar to b in Figure 1. We can consider
the center and the circle to be the parallel sides so, as in Figure 3, the circumference
of the circle is the base of the triangle and the area of the circle is, by the trapezoid
formula, Q@ r+ 0)r/2 = mr?
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