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Generating Exotic-Looking Vector Spaces
Michael A. Carchidi (users@quantics.com), QUANTICS, Inc., 801 Springdale Drive,
Suite 120, Exton, PA 19341 ‘

Many introductory textbooks on linear algebra introduce the definition of a vector
space using abstract notation for vector addition and scalar multiplication (such as
@ and ©, respectively), but then they generally limit the exercises and examples to
classic problems where vector addition and scalar multiplication are those defined
in R™. This note describes how to generate computational exercises designed for
teaching students the axioms of vector spaces using nonstandard operations for
vector addition and scalar multiplication. Such exercises have the pedagogical value
of allowing the student to study the axioms of vector spaces using familiar objects,
such as real numbers, but with unfamiliar operations for vector addition and scalar
multiplication. Checking the vector space axioms in such exotic vector spaces helps
students develop a deeper understanding of these axioms. The basis for generating
these exercises lies in the following theorem.

Theorem. Let R be the field of real numbers and let f : R — V be a one-to-one
JSunction from R onto a codomain V. If we define vector addition by

z®y=f(f"(2)+ () (1)

and scalar multiplication by

a0z =f(a-f7 () 2)

Jorall x and y in' V and all o in R, then the set V, together with the operations ®
and ®, form a vector space over the field of real numbers.

Here, the operations + and - are ordinary addition and multiplication of real
numbers. The additive identity for the vector space is 0 @ z = f(0), and the additive
inverse for the element z in V is (—1) ® z = f (—f~!(z)). The real vector space V
is sometimes denoted more formally by (V,®, ®).

304 THE COLLEGE MATHEMATICS JOURNAL



Proof. 'We need only note that when f~! is applied to both sides of equations (1)
and (2), we get

ffeoy)=f@)+f'y) and fHaoz)=a f(z),

respectively, showing that f~! is an isomorphism of (V,®,®) onto (R, +,-), which
is the vector space of real numbers under the usual operations of addition and scalar
multiplication. [

For a more direct algebraic proof, we can test the individual vector space axioms.
For example, to establish the axiom a ® (8 © z) = (- ) @ x, we write

a@Boz)=a0 f(B f(2)=f(a (B F()))
=f(a (6-f'@))=f((a-B) f () = (a-B)Oa.

The following examples show how this theorem may be used to generate exercises
in the study of vector spaces.

Exercise 1. Let 3 be any positive real number and let f : R — R* be defined by
f(z) = (1/8)e*. Then f is a one-to-one function from R onto the set of positive real
numbers, and f~!(z) = In(Bz) for z > 0. Using equations (1) and (2), we would
define vector addition and scalar multiplication by

@y = %eln(ﬁw)-l-ln(ﬁy) — By and @@z = %ea In(Be) _ ga-1za

respectively. Show that for any 8 > 0, the set of positive real numbers together with
the operations z @y = Bzy and a ® x = 3%~z form a vector space over the field
of real numbers.

When @ = 1 the operations in exercise 1 simplify to z @y = zy and o © & = z,
an example provided in many linear algebra textbooks.

Exercise 2. Let n be an odd positive integer and define f : R — R so that f(x)
is the principal value of /™. Then f is a one-to-one function from R onto R and

f~Y(x) = 2™ . Therefore, we would define vector addition and scalar multiplication
by

Dy = (m" + yn)l/n and a@z= (om;n)l/" _ al/naj.

Show that when 7 is an odd positive integer, the set of all real numbers together
with the operations z @ y = (z" + y™)*/™ and a ® z = o!/™x form a vector space
over the field of real numbers.

Exercise 3. Suppose that b is any real number and f(z) = = + b. Then f is a
one-to-one function from R onto R having f~!(z) = x — b. Therefore, we would
define vector addition and scalar multiplication by

z®@y=(x—-b)+(y—>b)+b=xz+y—>b and aOz=oalzx—0>)+b.

Show that for any real number b, the set of all real numbers together with the
operations t @y =z +y—band a ©®z = az + b(l — o) form a vector space over
the field of real numbers.

VOL. 29, NO. 4, SEPTEMBER 1998 305



Exercise 4. Let f : R — (—1,1) be defined by f(z) = tanhz. Then f is a one-
to-one function from R onto the set of real numbers in the open interval (—1,1),

and
_ 1 1+z
—1/\ _ 1, _ 1
f(z) =tanh™ "z 2ln<1—m>

for —1 < z < 1. Vector addition and scalar multiplication in the theorem become

x @y = tanh (tanh_1 « + tanh™? y) and a®x = tanh (a tanh ™! a:) ,

which reduce to

z+y and oz@ac:(1+m) — (1)

14+ zy (14+z)>+(1—-2) 3)

rdDy=
respectively. Show that the set of real numbers in the interval (—1,1), together with
the operations in equation (3), form a vector space over the field of real numbers.

After your students have worked this exercise, you may want to ask them why the
set of real numbers in the smaller interval (—%, %) together with the operations in
equation (3) do not form a vector space over the field of real numbers. In answering

this question they learn to appreciate the requirement of closure.

Other applications. Some students may wonder why we bother to define vector
addition and scalar multiplication in an abstract way. Where is the application in this?
One response to this question lies in exercise 4, which has a direct application in
Einstein’s special theory of relativity. In one-dimensional special relativity, velocities
z and y (whose magnitudes are given as fractions of the speed of light) do not add
in the usual way [see Richard Mould, Basic Relativity, Springer-Verlag, New York,
1994, page 36]. Rather, they add according to the rule

Using this observation, the following problem in special relativity becomes easy to
solve.

Suppose in a galactic rocket convoy, n rockets are traveling from Earth to Alpha Centauri,
the nearest star to our sun. Assume that earthbound observers see rocket 1 (the slowest
and closest) receding at a velocity v. Each pilot, who is watching the rocket directly
ahead in the convoy, sees this rocket receding at the velocity v as well. What is the
velocity of the leading rocket, as measured by observers on earth?

To determine this, we need only note that the vector addition on (—1,1) for v is
precisely the special relativistic velocity addition formula, so the desired velocity is
14+v)"=(1—v)"
(14+v)"+(1—v)"

VOOV Dv=n@Quv=

The number of exercises that can be constructed using equations (1) and (2) is
limitless. Just choose your favorite one-to-one function from R onto a codomain
V and use both equations in defining vector addition and scalar multiplication.
Of course, your students should be asked to do each of these exercises using the
vector space axioms, without knowledge of the theorem. In this way when students
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demonstrate the property (a+03)0z = (a®z)®(B8Gx) in each of these exercises, they
will better understand that a4+ is just the ordinary addition of the real numbers o and
B in the field R, while («®@2z)®(B0) is the vector addition of the elements a«®z and
GOz in V. Similarly, when students demonstrate the property a®(80z) = (a-8)Oz,
they will better understand that « - 3 is just the ordinary multiplication of the real
numbers o and @ in the field R, while a ® (8 ©® z) involves the scalar multiplication
of elements in the field R with elements in the vector space V.

All of the vector spaces constructed using the above theorem are one-dimensional.
Exotic higher-dimensional vector spaces can be formed using a direct sum of such
one-dimensional vector spaces. These higher-dimensional vector spaces can then be
used to construct some very interesting exercises.

For example, using the direct sum of the vector spaces in exercise 1 (with § = 1),
exercise 2 (with n = 3), and exercise 3 (with b = —1), we can let V be the set of
3 x 1 matrices

x
V= Y z,y,z€ R with >0,
z

with vector addition defined by

er' o
v]ely | = F+v?) /
z 2 z+2 +1
and scalar multiplication defined by
x xz
ao |y | = al/3y
z az+a—1

Then V with these operations forms a three-dimensional vector space over the field
of real numbers R. The additive identity for this vector space is the matrix

T 1

0® Yy = 0 3
z -1

x

and the additive inverse of | y | is

z

x 1/z
Doly|=| -v

z —z—2

Once these higher-dimensional vector spaces are introduced, it is easy to generate
many challenging problems involving the concepts of basis sets, coordinate vectors,
inner products, and linear transformations.

With the theorem as a guide, an instructor of linear algebra can construct interesting
and fun exercises that test understanding of the abstract nature of vector spaces. If
your students can solve the preceding exercises, you can be confident that they have
grasped the concepts behind the vector space axioms. I have used similar exercises
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in my classes for the last six years, and many of my students have found them
challenging, instructive, and fun to do.

Equation (1) can also be used to generate examples of exotic-looking abelian
groups. Furthermore, by combining equation (1) with z ® y = f (f~}(z) - f~1(y)),
you can generate exotic-looking fields for beginning abstract algebra students. Later,
when the concept of isomorphism is introduced, it is nice to return to these examples
and have students find an isomorphism between the exotic structure and the familiar
structure on R.

Acknowledgments. R. R. Carr of Drexel University supplied the rocket-convoy application. Thanks also
to Chris Rorres of Drexel University and Robert L. Higgins of QUANTICS, Inc., for their many useful
suggestions.

Nothing Counts for Something
Norton Starr (nstarr@ambherst.edu), Amherst College, Amherst, MA 01002-5000

Good examples can bring a course to life and they are memorable long afterward.
This brief note discusses a simple problem appropriate to any course that develops
elementary methods of discrete counting. It involves the old-fashioned floor lamp
with numerous bulbs and multiple switches, for which a natural question is, how
many levels of light are possible? Students can relate to this puzzle, for some have
seen these lamps and it's possible to bring one to class for a rare, live demonstration
of the subject of study.

The problem with nothing. The history of number systems shows that the in-
troduction of zero was a major advance [1-3], both for its role as a place holder
in number representations and also as a number itself that can be used in ordinary
arithmetic and algebraic computations. The difficulty with the idea that nothing can
be something persists among today’s students, for whom the empty set or vacuous
state is often overlooked. This is evident whenever my example of a lamp is used
in teaching elementary combinatorics.

I pose the problem by inviting my class to consider the number of illumination
levels available in a floor lamp having the following features. Light is provided by one
large, central bulb together with three smaller bulbs clustered around the main stem.
The central bulb can shine with, say, 50, 100, or 150 watts depending on its switch
setting. A second switch also rotates among four settings, one illuminating a single
outer bulb, the next powering instead the other two smaller bulbs, and the third
lighting up all three outer bulbs. Let’s suppose that each of these three is a 60-watt
bulb, in order to avoid overlap in the wattage output of different combinations.

It has been my experience that when students are asked for the number of possible
light levels, they respond with a dazzling variety of proposed counts. Nine, as the
product of three outer levels with three central bulb levels, is a common response.
Classes over the years have been creative in thinking up other counts as well, and
they generally ignore the fact that the “off” position for each switch needs to be
considered. Including “off,” there are four levels for each of the two switches, and the
multiplication principle leads immediately to 16 levels of illumination. Occasionally
a bright or experienced student comes up with the correct enumeration. Even more
unusual a response is 15, representing the number of nontrivial levels of illumination.
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