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This capsule illustrates how a standard calculus exercise, the evaluation of
fsinxcos xdx, (1)

can lead to some 1nterest1ng combinatorial identities. Evaluating (1) by the substitu-
tion u = sin x yields sin’x/2 + C;, whereas the evaluation of (1) via u = cos x yields
—cos 2x /2 + C,. Since these antiderivatives differ only by a constant, we obtain
sin’x + cos?x = C for some constant C. Setting x = 0 yields

sin’x + cos’x = 1. (2)

Now suppose we proceed analogously with
fsinz’”“x cos?"*x dx, (3)

where both m and n are nonnegative integers. As with (1), we have at hand two
complementary methods for the evaluation of (3). Since (1) enabled us to rediscover
(2), we may expect that (3) will lead to some generalization of that basic identity.

Suppose we first split off a power of cos x, replace cos*"x by (1 — sin’x)", and let
u = sin x. Then (3) reduces to

fu2m+l(1 —u?)" du.

Then use of the binomial expansion yields

2m+2i+2

n A sin X
-1 '(n) 2m+2i+1d = _ ( )
igo( ) "/u ‘T Z( ) 2m+2z+2
which we write as
sin?™*2x ny\ sin?x
S (1), ;
2 L (U mit1 (32)

On the other hand, we can compute (3) by reversing the roles of sin x and cos x
(which, in turn, reverses the roles of m and n) and letting u = cos x. The result is

cosz”+2 m cos?ix
— +G,. 3b
.g’ ( ) n+i+1 (3b)
Since (3a) and (3b) differ only by a constant,
sin®x cosZix
2m+2 2n+2 m ) - _
(sin X)E( D(}) s oo x)Z( () sreg = o

(4)

for some constant C,, . It may be interesting to interpret (4) as a “first-quadrant
integer lattice of trigonometric identities” generalizing the fundamental relation (2)
with G, ,= 1.
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One would now like to know the value of C, , as a function of m and n.
Substituting x = 0 in (4) yields

Coon= é(—l)"(’?)

whereas the substitution x =« /2 yields

1
n+i+1’

n

Con= (") s

i=0
Hence,

> (-0

) . m,n 7
i=0 1/n+i+1 o i

()
This demonstrates that C,, , and the expression
Y (-("7)
i=0
are both symmetric in m and n.

It may be instructive to attempt an explanation of this symmetry. Recall that the
Beta function is symmetric in its two arguments:

n+i+1

B(m+1,n+1)=f1x’”(1—x)ndx. (6)
0
Upon expanding (1 — x)", we find that (6) becomes

n
4= () o = G
B(m+1,n+1) EO( ) — Cou.

So now we can evaluate C,, , using the standard relationship
I'(m) I'(n)
B =—
(m, n) I'(m+n)
[[(k) = (k —1)! for positive integers k] between the Beta function B(x, y) and the
Gamma function I'(x). This leads directly to

m!'n!

=" 7
Cmon (m+n+1)1° @
a form in which the symmetry of C"mm is explicit.
An appealing form for C, , is acquired by taking x = 7/4 in (4):
1 m+1l 5 n 1

oy 0'(Nymrs

G, (2) EO( i 2(m+i+1)
(8)

L) B D

i=0
is again apparent. Now let m = n in both (5) and (8).

n

Here the symmetry of C,,
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Equating the resulting expressions for C, , produces the striking identity

n 1
D e e N A e S
Since
(n1)? 1
Cin= @2n+1)! = (2n+1)(2nn) ,

we can use the expressions in (9) to obtain formulas for the reciprocals of (2,;'), the
central binomial coefficients.
Finally, it is worth noting that a similar analysis may be performed on

f tan®”*1x sec?" " 2x dx,

using the substitutions u = tan x and u = sec x. This results in

’

—=C N
n+i+1 e

(10)

a lattice of identities that both generalizes sec®x — tan’x = 1 and reflects its asymme-
try. Substituting x = 0 in (10) yields

an= (= 1)’"“2( (")

tan®'x m m\ sectx
" +(-1) “(secz”“x)Z( ( )

(tan?>"*2x) Z ( )

(11)

n+i+1’

and comparing with (5) gives C,, ,=(—1)"*'C,, ,. Now substituting x =7 /4 in
(10) yields

Gam £ (D 0™ £ o () by oo

n+i+1°

Choosing m =n in both (11) and (12) and equating the resulting expressions
produces the identity

n+i+l 5, n+i+1’

iéo(_l)nﬂﬂ () i [1+(_2)n+i+1] (1)

The fact that there is nothing deep or elegant in any of this only adds to the
charm of these investigations.
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