Since V2 > 4/7 > \/3/—2, the conjecture about the heights is validated for very small
values of A/L.

We have seen three different models for the buckling of the rail, each using a
different mathematics for its formulation. For a given length and extension, each
may be solved using a computer algebra system. The dimensionless form of the
solution is h/L = \/A/Lg(A/L) where g is an analytic function of its argument.
We have, therefore, given the leading term of the series for g. In many instances,
a formula reveals relations that are not readily apparent in a numerical solution. In
these three problems, for example, we see that the buckled height is proportional
to the geometric mean of L and A.

Who Cares If X2 + 1 = 0 Has a Solution?
Viet Ngo (viet@csulb.edu) and Saleem Watson (saleem@csulb.edu), California State
University, Long Beach, CA 90840-1001

The shortest path between two truths in the real domain passes through the complex
domain.—/Jacques Hadamard

Most mathematics textbooks introduce complex numbers as a means of solving equa-
tions that obviously have no real solutions. A typical introduction goes something
like this:

The equation z? + 1 = 0 has no real solution because there is no real number z that
can be squared to produce —1. To solve such an equation, mathematicians created an
expanded system of numbers using the imaginary unit ¢, defined as 1 = +/—1.

A student may well ask: Why solve this equation in the first place? And in any case,
who cares if it has a solution?

These are legitimate questions. One would expect a practical or intuitive justi-
fication for introducing such a novel idea. After all, there are direct and intuitive
motivations for introducing other aspects of our number system. The natural num-
bers are used for counting, negative numbers may be used to describe debt, rational
numbers help us describe such natural concepts as “half a quart of milk,” and irra-
tional numbers are needed for representing certain distances in the plane. On the
other hand, there is no easy application of complex numbers that serves to moti-
vate their use at the usual introductory level. Moreover, by the time students are
sophisticated enough to understand the applications of complex numbers, the need
to motivate them is usually forgotten.

In this paper we give four situations that can serve to motivate complex numbers
for students who have had two semesters of calculus. We have found that the best
motivation for most new ideas is their utility in solving real problems. The examples
presented here use complex numbers as a tool for obtaining real answers in real
situations.

The mother of invention. Historically, complex numbers were introduced for
practical reasons. Their use by Rafael Bombelli (1526-1572) provides insight into the
need for complex numbers. ’

In the sixteenth century mathematicians were interested in finding solutions (real,
of course) of polynomial equations. One of the high points [3] was Cardano’s solution
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of the cubic equation 23 +az? + bz +c = 0. The substitution z = y— (a/3) eliminates
the quadratic term, yielding a “depressed” equation of the form

v’ +py+q=0.

Thus it is sufficient to consider depressed cubic equations.
The substitution y = u — (p/3u) gives u® + qu® — (p®/27) = 0. By the quadratic

formula, we get
1
ud = 3 (—qj: \ @+ (4p3/27)> )

which gives us u. Substituting this value of u into the expression for y, and making
use of the fact that p3/27u? = u3 + q, we obtain the cubic formula:

sl —q x4/ + (4p3/27) 5| qE /¢ + (4p3/27)

y= 2 - 2

Bombelli applied this formula to the equation y® — 15y — 4 = 0, obtaining

y= {/24 V=121 - {/—2+ v—T21.

But it turns out that this solution is just y = 4.

To see this, observe that a cube root of 2+4+/—121 is 2++/—1. Bombelli discovered
this (through trial and error) by cubing 2 4 /=1 and treating the square of v/—1 as
—1. Similarly, a cube root of —2 + /=121 is —2 + /—1. It follows that the solution
of the equation is (2 4+ /—1) — (=2 +v/—1) = 4.

The point is, Cardano’s formula gives the correct answer 4, but to obtain it from
the formula, we had to apply algebraic rules to expressions such as y/—1. This was
Bombelli’s motivation for accepting complex numbers: They helped him obtain real
solutions to cubic equations.

A “unifying” concept. A fundamental physical problem is to describe the motion
of a mass m suspended from a spring with spring constant k. The mathematical
model for this mechanical system is the differential equation

my" + ky =0,

where y(t) is the position of the mass at time t relative to its equilibrium position
[1]. For simplicity we assume that m = k = 1 and that the mass has initial position
y(0) = 1 and initial velocity y'(0) = 0.

It is usual to assume solutions of the form y = e, which upon substitution into
the differential equation leads to the characteristic equation r2 + 1 = 0. But this
latter equation has the complex roots i and —i, so we get the complex solution
y = c1e" + cpe . Now, making use of the initial conditions, we obtain ¢; + ¢z = 1
and ic; —icy =0, 50 ¢y = ¢ = 5. Thus, y = €' + £e~%. But then y = cost, a real
solution to the real physical problem!

One may ask: Why not assume a solution of the form Acost + Bsint to begin
with? Of course we can do that, but by using complex numbers we can solve all
homogeneous linear differential equations with constant coefficients in a unified
setting—namely, we may always assume solutions of the form y = e,
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Indeed, it may not be so easy to guess the form of the solution for a damped
mechanical system such as

y'+2y' +2y=0, y0)=1, '(0)=2.

However, by simply assuming a solution of the form y = €™ we get the characteristic
equation 72 + 2r 4 2 = 0, with complex roots 1+ 4 and 1 — 4. This gives solutions of
the form

y = e+ | gpe=ilt,
The initial conditions now yield the real solution y = ef cost + e'sint.

For efficiency. If one already has a knowledge of complex numbers, then an easy
way of evaluating [ e*® cos bz dz is to consider

: 1 ; a—bi
(a+b1)a:d — (a+bi)z _ azx b i sin b
e x e = ———¢e"(cos bx + isin bx).
/ o+ bi 2y (cosbet )
The integral we want to evaluate is simply the real part of the last expression; that
is,
ar

/ e’ cosbx dr = (acosbx + bsinbx).

e
a? + b2

Insight from the complex view. The function f(z) = 1/(1+ 2?) has the power
series representation

f@)=1—a2?+a2* — 28 ...

This series is obtained from the geometric series for 1/(1 — z) by substituting —z2
for z. The function f is very well behaved, it is infinitely differentiable and bounded.
So one may expect that the series for f would converge for all z. But the ratio test
shows that the radius of convergence of this series is 1. What stops the convergence
beyond 1 and —1?

To answer this, we can look at f as a function of a complex variable. The singu-
larities of f(z) = 1/(1+ 22) are i and —i, which are a distance 1 from the origin. So
the domain of convergence of the complex series

fR)=1-22+2*—20+...

is the unit disc D [2]. Since the interval of convergence I of the corresponding real
series is the restriction of D to the real line, it follows that I = (—1,1).
We thus explain the behavior of a real function by looking at its complex twin.

Conclusion. It is intriguing how complex numbers naturally occur in solving real
problems. These few examples are a mere aperitif to the many deep insights that
complex numbers provide. It is interesting and instructive to find other situations
where complex numbers can be used to solve or explain a real problem.

One of the most basic observations about complex numbers is that they complete
our understanding of our number system in an elegant way: A polynomial equation
with complex coefficients must have complex solutions. Complex numbers even
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help explain why the product of two negative real numbers must be positive (recall
that multiplication of complex numbers involves a rotation). Indeed, the shortest
path between two truths in the real domain does pass through the complex domain.
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Polishing the Star
Cheng-Shyong Lee (eelee@sdccl0.ucsd.edu), University of California—San Diego, La
Jolla, CA 92093

Recently, Hoehn proved the following interesting theorem about a pentagram [A
Menelaus-type theorem for the pentagram, Mathematics Magazine 66:2 121-123]
Hoehn used Menelaus’ theorem 20 times, but it is possible to give a much simpler
proof. Geometry students may enjoy seeing results concerning the pentagram as an
application of the Law of Sines.

Theorem. [f AyB1A;BsA3BsAyByAsBs is a pentagram (see Figure 1), then

A1By A2By A3Bs AyB,; AsBs

. . . . =1 1
B1Ay ByAs BsAs ByAs BsA S
and
B; As . B4A, . By Ay . Bs A, . B3 As _1 )
AsBy A1Bs A4Bs AsBs AsB;
Figure 1
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