Proof by Confrontation. Every college mathematics teacher has seen this at least
once. A surly student comes by during office hours and demands an explanation for
the grade on his proof. “You took off ten points for that?”

Proof by Frustration. Incomplete results turned in by hard-working students who
didn’t pick up the “trick” to a proof, like adding and subtracting one to the left
side, etc. It is clear that a lot of time was invested in the proof. The student may
even write a little note, sharing the agony of his or her struggle with the problem.

Proof by Juxtaposition. Similar to Proof by Bisection, the student, after carefully
summarizing the hypotheses, proves an entirely different, perhaps even unrelated,
result. While sometimes done accidentally, the usual motivation is for some partial
credit on what would otherwise be a total loss.

I would enjoy hearing from readers who have also encountered unusual proofs by
—tion.
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Most of today’s calculus texts include

1 1
lim ( - - —-)
x—o\sinx X

as either an example or an exercise involving 'Hospital’s rule. A few ([1],[2],[3], for
instance) also include

L1
xl—r»no( sin? x x2)

as an exercise— one that leads the students with enough determination to work on it
into a morass of algebra and repeated applications of 'Hospital’s rule. Even fewer
([1], for example) include

) 11
v ( si x  x3 )

The purpose of this note is to present an interesting “recursive” computation of

1 1
lim ( L —t),
x—-0% \ s X X

for all real numbers ¢, using only two straightforward applications of I'Hospital’s

rule.
To simplify the arguments we will introduce names for certain functions of x and

limits as we encounter them. First let
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and let
L,= lim F(x).
x—07
Note that certainly
L=0 (r<0). (1)

Although (1) is a trivial observation, we will be using that fact for —1 <t <0 to
help compute L, for 0 <¢<1.
Now consider ¢ > 0 and observe that

N(x)

F(x)= D,(x)

where

N

Since N,(x) —» 0 and D,(x) >0 as x > 0%,

t
-1 d D =x'.
sinx) an (%) = x

N,(x)
L= 1
=20 D(x)

is indeterminate. Now

( X )'-1 sin X — X COS X
, = —
N/(x) _ \sinx

sin? x
D/(x) tx'1
x 1 sin x — X COS x
(. ) -1+ ——
sin x sin” x
xl—l

X t—1
(sinx) 1 Ginx—xcosx sinx—xcosx

. - + ;
xt1 sin? x x'"Lsin® x

so that, letting

sin x — X cos x
G(x)=——F5—

sin? x
we have
N/(x) G(x)
DI,'(x) =Fa(x) - G(x) + —= (2)
Let
N’ (x
M,= lim /(%)

x=0" D/(x)
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Of course, we want to find M, which then, by 'Hospital’s rule, equals L,. But first
we need to make the following easily verified observations:

F(x)>0 fort>0 and 0<x<um, (3)

G(x)>0 forO0<x<w and (4)
G(x) 0 if t<2

lim —r=(1/3 ifr=2 (5)
o X +oo if1>2.

When verifying (5), first do the case ¢ =2 using I'Hospital’s rule and then apply
that result to do the other cases. The special case of (5) with =1 yields

lim G(x)=0. (6)

x—0*

Now we are ready to proceed “recursively.”
For 0 <t <1 we have —1 <7—1 <0, so that by (1), (2), (5) and (6)

L=M,=0 (0<r<1). (7)
For 1 <t <2 we have 0 <t—1 <1, so that by (2), (5), (6) and (7)
L=M=0 (1<1<2).
For + =2 we have t — 1 =1, so that by (2), (5), (6) and (7)
L,=M,=1/3.
For ¢t > 2 we have t — 1 > 1, so that by (3) and (4), for 0 <x <,

()60 + S5 O,

hence, by (2) and (5),
L=M,=+ (1>2).

In summary,

1 1 0 ifr<2
lim+( — ——;)= 1/3 ift=2
xooTASImX X +oo if1>2,

and we see that the three values L, attains are represented by the cases =1, 2
and 3.
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