Clearly, if A and B are n x n matrices, then A ="' a;and B=3Y""" 4,
where «;,8; € 6;. As matrix multiplication is distributive, applying our main fact

gives us

n—1 n—1

AB = Z ;i = Z Yk, Wwhere i = Z a;f3; € 6.

i,j=1-n k=1-n iti=k

To see the benefits of thinking of a matrix as a sum of diagonal shift matrices,
consider the usual computational proof that the product of two upper triangular
matrices is upper triangular. The result is obscured by the difficulty of picturing all
possible row-by-column products. However, if A and B are upper triangular, then
A and B are sums of upward shifts only; that is, A = Z?:_Ol a; and B = Z;:Ol B;.
From above, the shifts «y; that occur in the product AB must also be upward, since
kE=i+372>0.

Here are two exercises, taken from Gene Golub and Charles Van Loan, Matrix
Computations (Johns Hopkins University Press, Baltimore, 1983). Can you write the
solutions using both the traditional notation and our diagonal notation?

Problem 1. Show that a strictly upper triangular matrix is nilpotent.
Problem 2. Recall that an n x n matrix is said to have upper Hessenberg form if

all of the entries below its subdiagonal are zero. Show that if A € R™*™ is upper
triangular and B € R™*" is upper Hessenberg, then C = AB is upper Hessenberg.

Finding a Determinant and Inverse Matrix by Bordering
Yong-Zhuo Chen (yong@vms.cis.pitt.edu) and Richard F. Melka (melka+@pitt.edw),
University of Pittsburgh at Bradford, Bradford, PA, 16701

Consider the class of n x n matrices B of the form

bl a; ap e Qg
ay by ay - ag
ag ag by -+ az |
an Qn Qn - bp

where for all 7, a; # b;. We wish to find convenient formulas for the determinant and,
when appropriate, the inverse of such a matrix. There are, of course, all-purpose
methods for solving this problem, but here is an approach that takes advantage of
the special nature of these matrices and leads to an elegant result.

I J
0 BY
identity matrix and J is any matrix of appropriate size, then A is invertible and

4 |I —-JB7!
A _[0 B~ |’

Lemma. If B is any invertible matrix and A = where I represents an
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The proof follows from the multiplication of block-partitioned matrices; see David
Lay, Linear Algebra and Its Applications, (2nd ed., Addison-Wesley, Reading, MA,
1997, pp. 126-127).

We border B with I = [1] and J = [1,1,..., 1] and reduce the inner n x n block of
A to diagonal form by subtracting the appropriate multiples of row 1 from the other
rows; this is possible because of the special nature of the matrix B. These operations
leave the determinant unchanged and result in the following matrix:

1 1 1 1
—Q bl—al 0 0
—as 0 bz—az 0
—0np 0 0 bn_an

Now divide each of the last n rows by its (nonzero) diagonal entry to reduce
the original n x n block to the identity matrix. Each of these steps changes the
determinant by the factor of 1/(b; — a;). Subtracting each of the latter rows from the
first then produces a first row [1 + s,0,...,0], where s = > | a;/(b; — a;). Since
the latter row operations leave the determinant unchanged and result in a lower
triangular matrix, we find that

n

det A=det B=(1+s) H(bi —a;).

i=1

Clearly B is invertible if and only if 1 + s # 0, and we now add this assumption.
Finally, dividing the first row by 1+ s gives [1,0, ..., 0], which can then be used to
eliminate the nonzero entries in column 1.

When all of the above row operations are applied to the (n+ 1) x 2(n + 1) matrix
[A: 1], they lead to [I : A71], where

-1 e S e |
(by —a1)(1+ s) (bp, — an)(1 + s5)
1 a —a
" h—a Bioa(s) (b1 — (o —an) 1+ 5)
A—l = 1o —a2 —a2
(b2 — az)(br — a1)(1 + ) (b2 — a2)(bn — an)(1 + s)
6 —dn 1 _ an
L (bn = an) (b1 —a1)(1 + s) bn —an  (bn —an)*(1+3) |

The bordering method yields B! in a form that appears quite different from the
result produced by other inversion methods. The reader may verify this by working

out the results of the 2 x 2 case with and without bordering.
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