because each entry in Pascal’s Triangle is the sum of the two entries that “straddle”
it in the previous row, and so the process of taking successive differences starting on
a diagonal leads back to the appropriate row. The entries in the ith diagonal of
Pascal’s Triangle, then, are given by

_k(k+ D)k +2)(k+3)- - (k+i— 1)

4 i!

1

(k)

0]

Notice the striking similarity of equations (1) and (2): the only difference is that the
signs within each factor are reversed. If those factors are multiplied out for each
value of i, the coefficients of the resulting polynomials are the entries in the rows of
the Factorial Triangle.

Editor’s Note: Readers interested in a fuller exposition on sequences generated by polynomials may
enjoy Calvin Long’s article “Pascal’s Triangle, Difference Tables, and Arithmetic Sequences of Order n,”
CMJ 15 (September 1984) 290-298.

Finding Bounds for Definite Integrals
W. Vance Underhill, East Texas State University, Commerce, TX

Students in elementary calculus are often dismayed to learn that not every function
has an antiderivative, and consequently not every definite integral can be evaluated
by the Fundamental Theorem. Although most textbooks discuss such things as
Simpson’s Rule and the Trapezoid Rule, these methods are usually long and tedious
to apply. In many cases, reasonably good bounds for definite integrals can be
obtained with little effort by the use of well-known theorems. The fact that
techniques for doing this have never been discussed in one place is the motivation
for this note.

Except for very specialized and esoteric results, the following three theorems
provide methods for obtaining such bounds.

Theorem A. If f, g, and h are integrable and satisfy g(x) < f(x) < h(x) on the
interval [a, b), then

ng(x)dx <fabf(x)dx <Lbh(x)dx.

Theorem B. On the interval [a,b), suppose that f and g are integrable, g never
changes sign, and m < f(x) < M. Then

mfabg(x) dx <fabf(x)g(x) ax < Mfabg(x) dx.

Theorem C. If f and g are integrable on [a,b), then

[ g dx< \/ [y ax \/ [P e(xax .
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Example 1. Find bounds for f ‘/idx—— Using Theorem B, we choose

f(x)= —L— and g(x)==x. Then L < f(x)<} for x €[1,2], and
s \/x3 + 8
f] g(x)dx = 3. Therefore,
375 <f2& <..500. )
U yx3+8
If we use Theorem C, it is natural to choose f(x)= —2X _ and gx)=11t

(3
follows that x"+8

2 _xdx \/fld =32 <43, )
\/xT 1x+8

a considerable improvement over the upper bound obtained in (1). Since x* < x>
< x* on [1,2], Theorem A yields

f xdx f xdx f xdx
\/x +8 \/x +38 \/x + 8
The integral on the right equals 2y3 — 3, while the one on the left equals

%ln( 2 -'-2‘/8 ) Thus,

399 < "d" < .465. 3)
U +8

Combining (1), (2), and (3), we obtain

399 < [T b <38 4
x> +8

Note that in each of the three theorems, we were not forced into the choices

actually made. Other possibilities exist, resulting in different bounds.

In using Theorem B, one interprets a given integrand as the product of two
functions f and g, where g is of one sign and can easily be integrated. The
calculation of m and M is usually straightforward. One’s inclination, of course, is to
let g be something easy to integrate. There is sometimes more than one reasonable
“decomposition,” as the following example shows.

Example 2. For the integral flxze"‘z dx, we can let f(x) = e~ and g(x) = x%
0
Then ;13— < f(x)<1on]0,1] and [} g(x)dx = 1. Hence,
1 (e ax< L
e \f dx < 3"
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Other choices of f and g exist, however. Since xe = can easﬂy be integrated, let
g(x) = xe - and f(x) = x. Then 0 < f(x) < 1 on[0,1] and [{g(x)dx = (e — 1)/2e
yield

0<f0]x2e_"2dx< el <36 (5)

What if g(x)= x and f(x) = xe ™7 Then f cg(x)dx = 1, and f has its minimum
value m = 0 and maximum value M =1/ V2e . Consequently,

1 _52 1
0< | x% ¥ dx<——. 6
! e ©)

A quick check with the calculator shows that the upper bound in (6) is substantially
better than in (4) and (5). Combining the best of all cases,

1 1
122<— x% Fdx < —— < 215. 7
35 < = 9

If Theorem A is used on this example, we might reason that x*> < x on [0, 1], and

this leads to the inequality
fl “*dx <f x% " dx.
0 0

The integral on the left equals 2 — (5/¢) >.160, giving us a better lower bound than
in (7). Consequently,

160 <f]x2e_"2dx<.215.
0

Example 3. Find bounds for [3/°xdx/cosx. Using Theorem B, the obvious
decompositions do not yield particularly good results. Suppose, however, that
f(x) = x/sinx (with f(0) taken to be 1) and g(x) = sinx/cosx. Then f has m = 1

and M = 277/3\/5, and so

693 <In2 < [P XL ¢ 20 1) < 539, ®)
o cosx 3f3

Another estimate can also be obtained from Theorem A. Since 1 — x2/2 < cosx
<1,

fow/3xdx<f0w/3§£)i_ <fovr/3 1xdx .

The lower bound here (.548) is worse than that in (8), but the value of the
right-hand integral is ln( 3 18 ) Hence,

— 2

693 < f /3 xdx . 795,
b cosx
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Students find these methods a welcome change of pace from the routine numerical
techniques. They enjoy the challenge to improve on bounds already obtained, and
they gain valuable experience in working with inequalities, the heart of analysis.

Right Triangles with Perimeter and Area Equal
William Parsons, Borough of Manhattan Community College, New York, NY

Students learning about right triangles may observe that the area equals the
perimeter for the 6, 8, 10 and for the 5, 12, 13 right triangles. The question naturally
occurs whether this situation also holds for other right triangles whose legs have
integral length. Thus, the following discussion may be of interest.

If a,b and Va®? + b? are the sides of a right triangle, then the perimeter is
a+ b ++ya®>+ b and the area is ab/2. Equating both expressions yields

2,2
a’+ b= % —ab?— a% + 2ab + a* + b?,
which reduces to

_ ab
a+b= 4 + 2. (*)
Since a and b are natural numbers, it follows that ab/4 is a natural number and
thus either 4 divides a or b, or 2 divides both a and b. In the latter case, letting
a=2p and b = 2q, we find that 2p + 2q = pg + 2. Therefore, 2 divides p or ¢, and
so either a or b is divisible by 4. (Another elementary, but instructive, approach is
the following: if neither a nor b is divisible by 4, then both a and b are even.
Therefore, (a/2)(b/2) = ab/4 = (a + b) — 2 is even. But then either a/2 or b/2 is
divisible by 2, and this contradicts the assumption that neither a nor b was divisible
by 4.

Suppose that b =4m for some positive integer m. Substituting in (*), we get
a + 4m = am + 2. Since this can be written as

(a—4)+2=(a—4m,

we see that (¢ — 4) divides 2. Thus, the only solutions to our problem occur for
a =5 and a = 6, with respective values b = 12 and b = 8.

Having come this far, instructors can introduce primitive Pythagorean triangles
and raise the following conjecture:

For every natural number n, there is at least one primitive Pythagorean
triangle in which the area equals n times the perimeter.

The case n = 1 yields the above cited 5, 12, 13 triangle. Now we may be motivated
to try to verify this conjecture or to read the proof of Problem 3587 in School
Science and Mathematics 76 (1976) 83-84.

o
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