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After the first year of calculus, any of our students can tell us' that
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but practically any other infinite sums, such as the closely related
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are regarded as yes-or-no questions, as in: “Yes; by the ratio test.” It turns out that
exact values for these sums are very easy to obtain. In [3] Alan Gorfin derived a
recurrence relation that can be used to compute (1) for any chosen n. In this note
we do the same for (2) and then show that the two sums have closely related
combinatorial interpretations and that both recurrences can be easily derived using
intuitive counting arguments.
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Then My = e (providing we take the term 0°/0! to be 1), My = Y oo, k/k! =
Yo k/k =302, 1/(k— 1)l = 372, 1/k! = e, and using the binomial theorem,

IWell, perhaps this is wishful thinking.
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Thus

1 1
My = (O)Mo-l- (1)M1 = 2e,
2 2 2
Mz = <O>M0+ (1)M1 + <2)M2 = Be,

and by repeated use of (4) one can compute any M, and, indeed, )", [p(k)]/k! for
any polynomial p.
Gorfin [3] derives a similar relation for
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where r > 1, showing that
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We next show how the recurrences for S,, and M, arise in a combinatorial context.
If we have a set of n distinct objects and j identical boxes, where 0 < j < n, the total
number of ways of selecting one object to put in each box is the familiar binomial
coefficient (’;) But suppose instead we want to distribute all the objects among the
j boxes, leaving none of them empty; that is, we want to partition the n elements
into j nonempty subsets. The number of ways of doing this is known as a Stirling
number of the second kind, sometimes denoted {';} (see exercises 3 and 4). Just as

the total number of subsets of an n-element set is 3-7_ (}) = 2", the sum

-3

represents the total number of ways of partitioning an n-element set into nonempty
subsets. The numbers B,, are generally known as Bell numbers, to honor E. T. Bell.

It is not difficult to derive a recurrence for B,,. Note that By = 1 (there is exactly
one way of partitioning an empty set). Given n > 1 objects a1, as, ..., ay, we first
put a,, in a box; then for each j, 0 < j <n — 1, we can choose j additional objects
to go in the box with a,, and we can do so in (";1) ways. The remaining n —1—j
objects can then be partitioned in B,_1_; ways. Summing over all j, the total value
is given by

[y | o1
n = Bn__-= A n—1—7j
B : < J ) 1—j Z(n—1~J)B 1—j5
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The numbers B,, thus satisfy the same recurrence as the numbers M, of (3). Since
By = 1 Mo, it follows that B, = 1M, for all n.

Now consider the same situation—partitioning an n-element set into j nonempty
subsets—where in addition the j subsets are distinguishable, for instance, we might
regard each subset as a box labeled with a number 1 through j. There are {?}
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ways to partition the objects into j nonempty groups, but now the groups may be
permuted among the boxes in j! ways, yielding j '{’;} possible arrangements. Such
a distribution has been called a preferential arrangement [5], since it amounts to a
distribution of all the objects into j different ranks or preference groups. Let

P, = anj!{”i},
=0 \J

the total number of preferential arrangements of n objects. To derive a recurrence
for P,, initially Py = 1; when n > 0 there is at least one box, so we may assume
one of the boxes is labeled “#1.” Then for each j, 1 < j < n, there are (?) ways to
choose j objects to go into box #1, and then P,_; preferential arrangements of the
remaining n — j objects, so

£

which is the same recurrence satisfied by the numbers S,, of (5) with r = 2. Since
Py = %So, we have P, = %Sn for all n.

Both problems considered here have long histories. The curious reader might start
with the 1859 paper by Arthur Cayley [1], where a derivation of the recurrence (7)
is given. A different derivation, in connection with the sum (1), is found in [5]. The
recurrence for By, as well as the sum (3) appeared in [2] in 1887, and [6] contains
extensive further references on the numbers B,,. The textbook Concrete Mathematics
[4] is an outstanding survey of useful connections between continuous and discrete
mathematics.

Exercises.

1. Find the exact value of Y72 (3k® — k? 4 2) /k!.

2. Show that 72 k/(k+ 1)! = 1.

3. Prove that, forn > 0and 1 < j < n, {?} = j{ngl} + {’;:11} (Hint: Given a
set {a1,...,a,}, consider the partitions of {ay,...,an_1}; there are two cases,
depending on what is done with a,.)

4. Define {8} = 1, and note that {7} = {"} = 1and {}} = 0 for n > 0. Use
exercise 3 to construct the first few rows of a table of values for {?} similar to
Pascal’s triangle.
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A Rose Is a Rose Is a Rose . ..
Melissa Shepard (mashepard@stthomas.edu), University of St. Thomas, St. Paul, MN
55105

In this computer and writing project, second-semester calculus students use com-
puter graphics or calculator graphics to examine graphs of the family of n-leaved
roses and some variations. Students get the valuable experience of “tweaking” an
equation a bit and explaining how that affects the graph. Before I assign the project,
we discuss graphing (by hand) in polar coordinates, as well as finding areas bounded
by curves in polar coordinates. The class has two weeks to work on the project and
students are encouraged to consult one another, although each student must hand
in an individual report. In grading the project, I give the most credit to logical con-
clusions and clear explanations.

Problem 1. Plot the polar curves

r = cos(nt) and r = sin(nt)

forn =1,2,...,5. (See Figure 1.) Use the smallest interval of ¢ values over which the
polar graph is the complete curve. From your observations, make some conjectures
about the curves (number of petals, angles where the petals are centered, etc.). Try
to account for the difference between odd n and even n.
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Figure 1. Left: 7 = cos(36). Right: » = cos(46).
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