In this octant, the points of P, satisfy (1) and
XiHXg+ X — X~ X — s =X, X x4 x| <2

Equivalently (as can be easily verified by considering the two cases >7_,x; > 0 or
<0),

x>0 (1<i<k) and x;<0 (k+1<i<n),
k n
>x<1 and > x> -1
i=1 i=k+1
In order to compute the content of this part of P, we let ;= —x,,; (1 <i

< n— k) and compute the volume of the congruent polytope whose points (x,,
Xoy oo Xpo Uy, Uny oo oy U, _,) satisfy:

x>0 (1<i<k) and ©,>0 (I1<i<n-—k),

1

n—k

x<1 and > <1
i=1

i

-

This volume is given by

j(;lfol—x. L f lx:f f‘““l .. fl =it u’dun_k s duydudxg - - - dx,dx,

which (4 la Hsu) evaluates to (1/(n — k)!)(1/k!). Thus, the part of P, in the (Z)
octants (each with k nonnegative and n — k nonpositive coordinates) is

(&) mrrmr = () 2 )
and the content of P, is
2 a6 = ()

where this last equality is simply Vandermonde’s identity. [See, for example, John
Riordan’s An Introduction to Combinatorial Analysis, Wiley and Sons (1958)15.]

o

The Derivatives of Sinx and Cos x
Norman Schaumberger, Bronx Community College, Bronx, NY

In this note, we offer simple proofs of the formulas %(sinx)= cosx and

d—‘i—(cosx) = —sinx for x acute. Both derivations rest on the figure below and

sinh
h
use of the formula for the difference of two sines or the formula for the sine of

avoid the necessity of first deriving lim,_,, = 1. They also do not require the
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the sum of two angles followed by the formula for 1— cosx in terms of half
angles. One of these is usually part of the standard treatment for evaluating
) sin(x + Ax) — sinx

lim,, o .

Ax

L(x+A—2x)

C(cos x, sin x)

[0) A(cos(x + Ax),0) B(cos x, 0)
Figure 1.

In the figure, DC and EF are arcs of circles with center at O and radii 1 and
cos(x + Ax)/cosx, respectively. It is easily verified that the length of chord DC is
greater than the length of the inscribed arc tangent to DC at its midpoint (use the

fact that tan A_2x > % ), and the length of this arc is greater than arc EF. Thus,

arc DC > chord DC > arc EF. *)

Since DG =sin(x + Ax) —sinx, it follows from right triangle DGC that

sin(x + Ax) — sinx
chord DC = A
cos(x + Tx )

(cos(x + Ax)/cosx) - Ax. Using (*), we get

. Furthermore, arc DC =Ax and arc EF =

sin(x + Ax) —sinx _ cos(x + Ax)

Ax > Ax
Ax CcOS X
cos(x + T)
or
sin(x + Ax) —sinx  cos(x + Ax
cos(x+£)> ( ) ( )-cos(x+ﬁ).
2 Ax cos x 2

Hence,

sin(x + Ax) — sinx

7‘1— (sinx) = lim

= COS X.
Ax—0 Ax
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The same figure can be used to show that %(cosx)= —sinx. Using GC

= cosx — cos(x + Ax), it follows from right triangle DGC that chord DC

cosx — cos(x + Ax
= ( ) . Again, using (*), we get

sin(x + ATX)
Ax> cosx — cos(x + Ax) _ cos(x + Ax) Ax
sin(x + Az_x) cosx
or
—sin(x N %) < cos(x + iz) cos X < cos(;:—xAx) (—sin(x N Az—x ))
Thus,
d . cos(x + Ax) — cosx .
Ix (cosx) = AI;IBO Ax = —sinx.

It should be remarked that, although the angles were restricted to the first quad-
rant, the chain rule can be used to readily extend these results to other quad-

rants. Finally, we observe that the formulas limh_)o%h =1 and limh_,o%
= (0 are immediate consequences of our formulas, since
sin(x + h) — sinx . cos(x + h)—cosx .
=cosx and lim = —sinx
h—0 h h—0 h
for x =0.

Application of a Generalized Fibonacci Sequence
Curtis Cooper, Central Missouri State University, Warrensburg, MO

In the November 1979 Classroom Capsules Column, Michael Chamberlain gave a
solution to the following problem:

A fair coin is tossed repeatedly until n consecutive heads are obtained. .
What is the expected number of tosses e, to conclude the experiment? *)

This capsule offers a nice illustration of how a generalized Fibonacci sequence can
be used to solve the above expectation problem.
Given the positive integer » in (*), let

0, i=12,...,n—1
1, i=n
fi=y M
> ficks i>n
k=1
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