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Single Equations Can Draw Pictures
Keith M. Kendig, Cleveland State University, Cleveland, OH 44115

Analytic geometry is more powerful than Euclidean geometry, but students find
that analytic geometry leaves many of the familiar objects of Euclidean geometry
behind. Thus, any ellipse has a polynomial defining it, but where’s the polynomial
defining a triangle or a square or two intersecting circles? The purpose of this
paper is to bring the two worlds of Euclidean and analytic geometry a little closer
by one of the themes of higher mathematics—the versatility of polynomials.

In high school I'd just learned the equation of a circle. During a school assembly
a friend and I tried unsuccessfully to find a single equation that would give two
concentric circles. The next day my friend appeared in math class like one bearing
a rare treasure. He’d asked his father who, conveniently, was a mathematics
professor. On a piece of paper there was neatly written:

The equation of two circles of radii 1 and 2, centered at the origin, is

x*+2x%yr+y*t—5x?—5y*= —4.

We showed it to our math teacher; he and our class spent a few minutes
substituting in various points. It was like magic—the incredible equation always
worked.

Years later, the big light turned on. The secret to that incredible equation
turned out to be disarmingly simple: write the equations of the two separate circles
so 0 is on the right of the equals sign:

x*+y?—1=0 and x?+y*—-4=0.
Then just multiply the equations together!
Why does this work? Any point on the smaller circle makes x2 +y? — 1 zero, so

it certainly does the same to (x2+ y? — 1)(x2 + y? — 4). Likewise for any point on
the other circle. And if a point isn’t on either circle, then neither x? +y? —1 nor
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x2+y? — 4 is zero, so the product isn’t either. Thus the equation describes exactly
the two circles.

This principle gives students a wonderful toolbox for generating equations for all
sorts of simple pictures. Circles, lines, parabolas, ellipses, hyperbolas—write their
equations with zero on the right-hand side, multiply them together, and you have
the equation for the union of their figures. (Cf. [3], Theorem 3.13.) You can even
obtain the point (g, b) by looking at it as a circle of zero radius, (x — a)? + (y — b)?
=0.

Sometimes it is difficult to sketch a contour curve p(x,y)=0 by hand, but
mathematical graphics programs such as Mathematica, Macsyma and Matlab have
made this much easier. However, if p(x,y) is too complicated, even these
programs may miss some of the fine details of the curves.

Line segments: Plain and fancy. A single equation for a line segment would
certainly enrich the toolbox quite a bit. If we restrict ourselves to polynomial
equations p(x, y) =0, then there isn’t one, but we can approximate a line one unit
long by using an ellipse with major axis of length 1 and width less than the
thickness of the pencil line.

We can now almost (but not quite) draw a “happy face”:

The large circle, and the three small circles for the eyes and nose, are straightfor-
ward. But how about the smile? We start with a “line segment” of slope 1—that is,
a very thin ellipse whose major axis has slope 1. One such ellipse is

x2—(2—s)xy+y2=% (1)

(e > 0, and small—.001 will do nicely). It looks like the line segment from (— 3, — 3

to (3, 4). It is instructive to use a computer graphics package to discover how a
change in ¢ affects the graph of (1). Note that if we replace x by x? in the
equation y = x, we form a parabola. If we similarly replace each x by x2 in (1), the
segment (ellipse) will turn up smiling. We'll replace x by 2x2, so it will smile even
more. The equation of this smile is

£
4x*—2(2—¢)x%y +y?= 7
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Then the following equation produces a “happy face” of radius 2, with its nose at
the origin:

(24+y2=4) - (x2+y) ((x =)’ + (y - D) - ((x + D>+ (y - 1)?)

€
-(4x4—2(2—s)x2y +y2- Z) =0.

Of course one could multiply this out to conceal all tracks and amaze the
unsuspecting.

The trick of making the line segment smile can be generalized to make the
segment take the shape of the graph of any polynomial p(x) by replacing every
occurrence of x in (1) with p(x). Thus the happy face can be given a quizzical look
by replacing x with x? in equation (1). Just as replacing x by p(x) makes the line
segment follow the graph of y =p(x), replacing y by g(y) makes it follow the
graph of x =g(y). Finally, we may make the mouth open (keeping roughly the
same expression), by making ¢ in the ellipse’s equation larger, for then the ellipse
isn’t so thin.

A new angle on corners. By using various “line segments,” one can construct
equations for all sorts of polygons. However, for many of these, there is an easier
way. For example, x* + y* = 1 gives this:

As m gets large, the corners of x>™ +y?™ =1 get sharper and the figure will
eventually get inside any arbitrarily accurate pencil sketch of a square. Like-
wise, a near rectangle of dimensions 2a by 2b can be approximated by (x/a)*™
+(y/b)*™ =1, m large. And any of these rectangles can be rotated through an
angle by replacing x by xcos8 +ysinf, and y by xcos 8 —ysin@. Thus, for
large m, the locus of

x+y 2m xX—y 2m
+ =1
(%) &)
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looks like this:

Why does raising to large even powers create squares and rectangles? Observe
that for any positive integer m, x*>™ =1 describes the two vertical lines x = 1 and
x = — 1. In the region between these lines, x2™ is positive and less than 1, and if m
is very large, x2>™ is nearly zero there except very close to either line. Also, outside
the strip, x>™ quickly gets very large. Likewise, y?™ =1 describes two horizontal
lines, one unit above and one unit below the x-axis. In order for the sum of x2™
and y?™ to equal 1 when m is very large, (x, y) must be close to the boundary of
the intersection of the two strips:

_

One can create strips having any position or width:

ax +by +c\*™
d

defines two lines equidistant from the line ax + by +c =0. By appropriately

choosing d, one can make the strip any desired width. Now there’s no reason why

we must limit ourselves to only two strips! The intersection of strips of various

widths and slopes, can give any convex polygonal region. For example, for m
sufficiently large,

+ (x+y)2m + (x_y)2m B
2m 2m

stays as close to a regular octagon as one wants.

1

x2m +y2m
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Is there a connection between our construction of smiling faces and rectangles?
The smiling face is a union of simple curves which we found by multiplying
together the polynomials of the component “building blocks” and setting the result
equal to zero. Multiplying the curves p(x, y) = 0 produced the union of the curves.
For nonnegative polynomials g(x, y), adding the [g(x, y)]™ and setting this sum
equal to 1 produces a curve related to intersection. This curve lies near the
boundary of the intersection of the regions where the g(x, y) take on values less
than 1. Thus, for example,

(x+4)+y?=1 and (x-1)"+y>=1
give two unit circles centered at (— 1,0) and (3, 0). For large m,
((r+ 27 +y2) + ((x= 2 +y?) =1

yields the heavily drawn football-shaped curve:

<

Everything we’ve done generalizes to n dimensions. For instance in three
dimensions one can add high powers of nonnegative polynomials to create shapes
with vertices and edges, and one can multiply polynomials to get the union of
spheres, points, boxes, polyhedra, and so forth. A very thin pancake-shaped
ellipsoid serves nicely as a disk. If its two longer axes lie in the plane z =x +y,
then replacing x by x? and y by y? creates a bowl that will catch rainwater.
Replacing x by —x2 and y by —y? turns the bowl upside down. Finally, replacing
x by x2 and y by —y? produces a disk warped into a saddle shape.

By using appropriate elementary building blocks (simple polynomials) and putting
them together with multiplication (producing unions), addition (making corners),
or composition (introducing warping), one can create a vast array of interesting
loci. There’s almost no limit to the figures one can craft, using garden-variety
polynomials and a bit of imagination!

The interested reader will find further general information about curves defined
by polynomials in [1]; a shorter account with a broader perspective is contained
in [2].
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The Snowplow Problem Revisited
Xiao-peng Xu, University of Massachusetts, Amherst, 01003

A classic problem in elementary differential equations, commonly attributed to
R. P. Agnew [ Differential Equations, McGraw-Hill, 1942, pp. 30-32], is the follow-
ing:

One day it started snowing at a heavy and steady rate. A snowplow started out at
noon, going 2 miles the first hour and 1 mile the second hour. What time did it
start snowing?

The problem is usually solved by setting ¢ = 0 at noon, setting up the relevant
differential equation, finding its general solution and then using the conditions of
the problem to eliminate all the arbitrary constants. This procedure involves a fair
amount of algebra which, if not done carefully, can be quite tedious. There is,
however, a quick and easy way that avoids most of this algebra. It goes as follows:

Let ¢ denote time, measured in hours, and let ¢ =0 at 1:00 p.m. Let ¢, be the
time it started snowing. Let y(z) denote the distance traveled by the snowplow,
measured in miles. Let A(¢) be the height of the snow at time ¢, so that A(z,) = 0.
Let s denote the rate of the snowfall, measured in any suitable units. Then, since it
was snowing at a steady rate, hA(z)=s(z —t,). Assume that the width of the
snowplow is one unit and let k be the amount of snow that the plow can remove
per unit time. Then we have

dy c
d  t—t,

A
(t) o koor

where ¢ = k /s. Now (and this is the trick) instead of finding the general solution of
this differential equation, we note that

2=cln(t—1,)°, and 1=cln(t—1,)],

whence 2In[(¢, — 1)/¢,] = In[¢,/(¢t, + 1], and a very little algebra yields
t2+1t,—1=0,so that t,=(—1-V5)/2.

The Differentiability of Sin x
David A. Rose, East Central University, Ada, OK 74820

That sin x is differentiable with derivative cos x implies that sin x has derivative 1
at x=0, i.e.,
sin x

limit =1. 1
it = .
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