Figure 4
The black square and the black square-shaped ring cut by a plane at height z have the same
area.

The horizontal plane at height z intersects this solid in a square-shaped ring of
area (2r)? — (2z)2. Since both of the regions cut by the plane have the same area,
namely 4r2 — 422, the two solids have equal volume by Cavalieri’s Principle. The
pyramid has one third of the volume of the corresponding rectangular solid, so we
conclude that the volume of the bicylinder is two thirds that of its circumscribing
cube.

Can anyone refer me to a good tombstone engraver? No hurry, of course.

o

Round-off, Batting Averages, and lll-Conditioning
Edward Rozema, University of Tennessee, Chattanooga, TN 37403-2598

One summer day, as I was watching a televised Atlanta Braves baseball game,
Mark Lemke, the Braves’ second baseman, got 5 hits in 6 official at bats.* The
television announcer, Skip Carey, commented that Lemke raised his batting
average from .182 to .210; however, he didn’t give Lemke’s total number of hits or
his total number of official at bats. This raised a question which I thought would be
suitable for my precalculus classes: How many total hits and official at bats did
Lemke have at the beginning of the game? This simple question will throw us a
few curves and lead to an investigation of round-off errors, ill-conditioned systems,
and interval analysis.

*For this article, you will need to know that a player’s batting average is computed by dividing the
total number of hits by the total number of official at bats (both are integers). The batting average is
always reported after rounding the value to three correct decimal digits. For example, if a player has 20
hits in 70 official at bats, then the batting average is 20,/70 = 0.286.
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Let’s begin with a straightforward model: Let
x = Number of official at bats at the beginning of the game
y = Number of hits at the beginning of the game.
Then

+5
4 =0.182 and Y
X x+6

= 0.210. (1)

These equations appear to have a unique solution. Clearing denominators yields
the linear system

y=0.182x
y+5=0.210(x +6). (2)

Substitution yields x = 3.74/0.028 = 133.57...and y = 0.182(133.57...) =
24.3097... .

The problem is beginning to look interesting, since neither of these numbers is
particularly close to an integer. Rounding to the nearest integers yields (x, y) =
(134,24). However, y/x =24/134=0.17910... = 0.179 # 0.182; so this can’t be
right. It is tempting to try all combinations of the nearest integer values: x = 133 or
134 and y = 24 or 25; then 24 /133 = 0.180, 25/133 = 0.188, and 25/134 = 0.187.
This doesn’t seem to be getting anywhere. Although knowing that a solution exists
somewhere nearby may motivate us to continue searching, this is not very satisfy-
ing. It appears that the seemingly innocent act of rounding the batting average to
three decimal digits has caused a relatively large change in the solution of system
(1) or (2); such systems are known as ill-conditioned systems.

Let’s start over and incorporate the round-off errors into the equations (this is
the beginning of interval analysis). Suppose that y/x=0.182+ 0.0005 and
(y +5)/(x + 6)=0.210 + 0.0005. This gives the linear system

y=(0.182+0.0005)x and  y+5=(0.210+0.0005)(x+6). (3)

Substitution then yields x = (3.74 + 0.003)/(0.028 + 0.001). The smallest value for
x is x=23.737/0.029 = 128.86... and the largest value is x=3.743/0.027 =
138.6296... . This is a remarkable spread of nearly 10 at bats; the three correct
significant digits that we started with have disappeared (along with any hope for
using this problem in precalculus).

Using the formula y = (0.182 + 0.0005)x, we obtain a minimal value for y of
y =0.1815(128.86...) = 23.38...and a maximal value of y =0.1825(138.6296...)
=25.29.... Well, that’s a little better: There are only two choices for y, namely 24
or 25. We could now check (1) using all pairs (x, y) where x is any integer from
129 to 138 and y is 24 or 25. This is a little tedious; besides, if y is known, then
x =y/(0.182 4+ 0.0005). Thus y =24 implies x €[131.5...,132.2...] and y =25
implies x €[136.98...,137.7...]. We are down to only two possibilities:

(x,y)=1(132,24) and (x,y) =(137,25).

Checking the original equations in (1) shows us that both of these pairs are
solutions. Unfortunately, I have no idea whether Lemke had 24 or 25 hits at the
beginning of the day—this is a contingent fact of history beyond the scope of
mathematics.

Now, can we see where the significant digits were lost in the computations?
Glancing through the calculations shows that the digits were lost in the subtraction
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when substitution was used to solve system (3). The coefficient of x was (0.210 +
0.0005) — (0.182 + 0.0005) = 0.028 + 0.001. One significant digit was completely
lost and the uncertainty in the last digit was doubled. As is so often the case,
subtraction of almost equal approximations resulted in a loss of significant digits.
In this example, the loss was unavoidable; in many situations, there are strategies
for avoiding such subtractions (such as pivoting in Gaussian elimination; see [3]).

More insight into the problem can be given through geometry. In Figure 1 the
graphs of the linear equations in (2) show us that the system is ill-conditioned: The
two lines are nearly parallel so that the uncertainty in the point of intersection is
quite large. Figure 2 shows the graph of the inequalities implied by (3):

0.1815x <y <0.1825x
0.2095x — 3.737 <y < 0.2105x — 3.743.

_ 40
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No. of y=26
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120 y =23
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This is the set of all real number pairs (x, y) that satisfy (3). It is most remarkable
and fortuitous that there are two points with integer coordinates lying in this
region.

Although this example is probably too difficult for a precalculus class, it is quite
useful for a numerical analysis or linear algebra course. It points out that a little
round-off error can strongly affect the solution to a problem, when the solution
procedure involves subtraction of almost equal quantities. It also provides a
concrete example of an ill-conditioned linear system in which an input error of less
than 0.3% yielded an output error over 10 times as large. Moreover, since the
solutions are integers, students are forced to think about whether their solutions
make sense in the context of the problem. Most of my students find only one of the
solutions unless they are told that there are two possibilities.

This problem illustrates both the usefulness and the difficulty of interval analy-
sis. Ramon E. Moore [2] discusses the solution of the linear system Ax =b and
distinguishes two cases: the first in which the coefficients of 4 and b are exactly
representable by machine numbers, and the second in which the coefficients are
only known to lie in certain intervals. He points out that the second case is “much
more difficult” and that “the exact set of solutions...may be a complicated set.”
Moore cites a 2 X 2 example [1] for which the exact set of solutions is a nonconvex,
eight-sided polygon. My example is somewhat easier to use in class, since the
solution set is a convex polygon.
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On the Distance from a Point to a Curve
Mark Schwartz, Ohio Wesleyan University, Delaware, OH 43015

Let C be a smooth curve (in the x-y plane) parametrized by r(¢) and let g be a
point not on C. Assume g is the terminal point of the vector q in standard
position, and let f(¢) = |r(¢) — ql, the distance from the terminal point P of r(¢)
on C to g. In this note, we shall determine the local extrema of f. The critical
points of f occur at the values of ¢ for which (r(¢) — @) - r'(¢) = 0. At such a point,
if g is on the convex side of C (or C is a line) then f has a local minimum. Of
greater interest is the case when ¢ is on the concave side of C; the result furnishes
a nice application of the curvature and evolute of a curve. This case, depicted in
Figure 1, is assumed in the following result.

Theorem. Let ¢t be a critical point for the distance function f, and let P, be the
corresponding point on C. Then f has a local minimum (maximum) at t, if the

distance from q to P, is less (greater) than the radius of curvature at P,.

To establish the theorem, we start by recalling some formulas from vector
calculus. A recommended reference is Calculus with Analytic Geometry by G. F.
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