Case 1. Say the barn wall forms one entire side of the pen as on the left in Figure
1. Let the pen have length y (parallel to the barn) and width . Then y + 2z = ¢
and the area of the pen is A = zy = z(¢t — 2z) for the domain (¢ — b)/2 < z < ¢/2.
The lower bound on z follows from the assumption that y < b. Now A'(z) =t — 4z
so the maximal area occurs either at z = ¢/4, if this is in the domain, or else at the
endpoint z = (¢ — b)/2. To summarize, the optimal pen using the barn wall as one
entire side is described by

t—b

< (that is, t < 2b); or

G*»Jklﬁ

2
<0 <y

Case 2. Say the barn wall forms only a part of one side of the pen, as on the right
in Figure 1. Since y > b the pen extends y — b beyond the corner of the barn, and
Y+ 2x + (y — b) = t. The area of the pen is now given by A = zy = z(t + b — 2z)/2
for the domain 0 < z < (¢ — b)/2. The upper bound on z is derived from y > b.
Since A'(z) = (t +b)/2 — 2z, the maximal area occurs either at z = (¢ + b)/4, if this
is in the domain, or at the endpoint z = (¢ — b)/2. Thus the optimal pen when the
barn is only a part of one side is described by

t—> b _t+b .
= y= —<— < ;
T 5 Y b if 5 1 (that is, t < 3b); or
t+0b t+b L t+b t—2b
= = < < .
Y 1 if T <3 (3b <)

All that remains is to compare the areas of optimal pens obtained by the two cases.
But it is already apparent that if 2b < t < 3b then the two cases yield the same result:
a pen with ratio y/x = 2b/(t — b) whose maximal area occurs at an endpoint of the
domain in each case. It is easy to see now that (1) correctly describes the ratio y/x
of the dimensions of the optimal pen for each value of ¢.

The intermediate situation in which 2b < ¢t < 3b is not often addressed in calculus
texts. For example, if t =v/5b, then the optimal pen forms a golden rectangle.

Acknowledgments. The author thanks the referee for several helpful comments, clarifications, and im-
provements.

Exploiting a Factorization of x” — y"
Richard E. Bayne (bayne@scs.howard.edu), James E. Joseph, Myung H. Kwack, and
Thomas H. Lawson, Howard University, Washington, DC 20059

Early in elementary algebra classes students factor z2 — 32, 23 — 43, ..., where z,y
represent real numbers. Later they learn that

z" m—y)menlm (1)

for each positive integer n and all real z,y.
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We noted a simple proof described by R. F. Johnsonbaugh [Another Proof of an
Estimate for e, American Mathematical Monthly 81 (1974) 1011-1012], which shows
that the sequence {(1 + 1/n)"} is increasing and bounded above, by appealing to
this algebraic identity. First,

1 n+1 1 n
1 — (14—
< +n+1> <+n>

So the sequence is increasing. To see that it is bounded above, note that by (1), for
any integer k > 1,

n n—1 m n n
1 1 1 1 1 1 1
1 -1= E 14— — -1 = -
( + kn) kn = ( + k:n) < kn'" (1 + k:n) k <1 + k:n)

Rearranging, (1 +1/kn)™(1 — 1/k) < 1, and raising both sides to the power k gives
(14 1/kn)*™(1 —1/k)* < 1, from which it follows that

A LU U T |
n kn (1— P+

In particular, taking k = 2 gives (1 + 1/n)"™ < 4 for all n.
We also found that combining (1) with the binomial theorem leads to a funda-
mental identity of binomial coefficients:

kX::<> =(@+)" - 1—mZm+1)m T;OJZO( >x3+1
-3 ’ifl@’:)xk-

Then equating coefficients of z* on both sides yields

n n—1 m
()=, (")
m=k-1
We were motivated by the elegance and simplicity of the above proof that the
sequence {(1 + 1/n)"} is increasing and bounded above, and the proof of the
binomial coefficients identity, to investigate how (1) can be applied to produce
simple proofs of other basic results. Could learning one identity early on prepare our

students to establish a number of other known results and make other discoveries?
Finding the following elegant proof, using (1), of the existence of nth roots further
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encouraged us. This concrete example can help students make more sense of proofs
of more general results, such as the intermediate value theorem.

Theorem. [fn is a positive integer and p is a real number such that p"*1 > 0, there
is a unique real number x such that ™ = p and xp > 0.

Proof. Let Q be the set of rational numbers and let S = {r € Q : r > 0 and
r® < p"*t1}. Then 0 € S and 1+p™*! is an upper bound for S. If s is the supremum
of S, then for each positive integer k there is an ry, € S satisfying s < ry + 1/k. It
follows that the positive rational number r; + 1/k ¢ S, so these inequalities hold:

1 1
rp <s"<(rk+ E)” and P <p"tt < (rp + E)"

Utilizing these inequalities and (1),

1\" 1= \"
|s" —p™ | < (rk + E) —rp = A Z (rk + E) ppiom,
m=0

Now (rg + %)m < (s+1)™, since 0 < 7, < s, and r,’;_l_m < (s+1)"1™™ so
[s"—p" T < E(s4+1)""1. Since n and s are fixed but the integer k can be arbitrarily
large, it follows that s® = p™*!1. If p = 0, let 2 = 0; otherwise let z = s/p. Then z is
the unique real number satisfying " = p and zp > 0. O

Here are two more examples applying (1) to derive inequalities found in typical
analysis courses.

Example 1. (Bernoulli’s inequality) If z is real and 1+x > 0, then (1+z)™ > 1+nz
Jor each positive integer n.

Proof. We see from (1) that for any integer n > 1

n—1
(1+x)"=1+m2(1—|—x)m

m=0

n—1 m—1
:1+m[1+2 <1+x2(1+x)k>]
m=1 k=0

n—1 m—1
:1+nx+mzz Z(1+x)k21+nx.
m=1 k=0

This completes the proof. [

Example 2. For any real numbers x and y, we can show that

|z —y" < (Jz =yl + |y)"™ — [y|™ (2)
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Proof. By (1) and the triangle inequality,

n—1

" =y <z —y| Y |z|mym
m=0
n—1

<lz =yl Y (z =yl + y)"y"

m=0

By (1) again, this last expression equals (|z — y| + |y|)" — |[y|*. O

We close with some exercises.

Exercise 1. If m is a positive integer and () f(z) = =™ or (i) f(z) = z'/™, derive

the formula for f’(a) using (1) and the definition
o) — tim L@ (@)

z—a r—a

Exercise 2. Use Bernoulli’s inequality and (1) to prove that for 1+z > 0, (1+z)" >
1+nz+ (n/2)(n—1)z2

Divergence of the Harmonic Series by Rearrangement
Michael W. Ecker (MWEl@psu.edu), Pennsylvania State University, Wilkes-Barre
Campus, Lehman, PA 18627

It is standard fare in calculus to prove the divergence of the harmonic series:

LI S
1 2 3 n '

One typically shows that the partial sums S,, grow without bound, generally by a

“condensation” argument restricting n to the successive powers of 2. Alternatively or

additionally, the integral test is called into play to compare the series to the integral

c)01
/—da:.
T

1

Either approach affords the opportunity to look at the logarithmic growth of the
partial sums, although the second one is more explicit.

I offer a quick proof by contradiction. It is not intended as a substitute for the
above approaches, but students often benefit from seeing more than one. Moreover,
it provides a nice application of the result that rearrangement of the terms in a
convergent series of positive terms does not affect the sum. At the point in the
course where the rearrangement theorem appears, we already know the basic facts
needed now.

Proposition. The harmonic series diverges.
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