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nate change (1) becomes

r=psin ¢, zZ=pcos ¢, 0=, (1)

and combining this with “ordinary” cylindrical coordinates x =r cos 6, y = r sin 6,
z =z gives the standard spherical coordinate transformation

x=psin ¢ cos 6, y=psin ¢sin 0, Z = pcos ¢.

Thus, the spherical coordinate transformation arises as a degenerate case of the
double cylindrical coordinates on the torus. A natural question to ask at this point
is “How are these coordinates related to the sphere?” Note that as # — 0, the
torus passes through itself and collapses to a ball of radius R. Each point in the
ball is covered twice (except for the poles, which are covered infinitely many
times). To remedy this duplication we restrict ¢ to range from O to =. It is easy to
see that the resulting transform is one-to-one (except, again, at the poles). Figure 2
shows graphically how the coordinates ( p, ¢, 6) on the outer “half” of the torus
become the standard spherical coordinates on the ball p <R, as h — 0.

o

MAD Property of Medians: An Induction Proof
Eugene F. Schuster, University of Texas at El Paso, El Paso, TX 79968-0514

Recent elementary proofs of the widely known fact that any median for a sample
of n numbers x; <x, < -+ <x, minimizes the mean absolute deviation (MAD)
function

|x,'_a|

1
hn(a):;'

i

have appeared in [1] and [2]. Since this is a sequence of propositions, one for each
positive integer, it seems natural to prove them using a mathematical induction

VOL. 26, NO. 5, NOVEMBER 1995 387



argument. The proof may appeal to teachers as a good exercise for students who
are learning to construct proofs by induction.

Proposition P,. Letx, <x, < -+ <x, be any ordered set of n numbers. Then h,(a)
is minimized at any median of x,,. .., x,,.

Proof. Recall that the median of x,,..., x, is X, , if n is odd, and if n is even

then any number m with x, , <m <x, ,,, is a median. Let ¥ be the sample

mean, (x, +x, + -+ +x,)/n. Since h,(x,) =% —x, <X — a=h,(a) for a <x,, and

since h,(x,)=x,—X<a—%=h,a for a>x,, it suffices to consider @ €[x,, x,].
Observe that P, is trivially true. For n =2 and a € [x, x,],

2hy(a) =(a—x;) +(x,—a) =x, —xy,

so P, is true.
Assume that P, is true for all positive integers i, 1 <i <k, for a fixed k, k > 2.

Let x, <x,< -+ <x,,, be any ordered set of k+ 1 numbers. Then for any
acs[x;,xeq]

k+1

Z lx, — al
i=1

[

(k+ DAy (@)

k
a—x,+ Y lx,—al+x,, —a
i=2

Ix;, — al +x,,; —x,.

I
it

4

By the induction hypothesis, ©¥_,|x, — «|, and hence ., is minimized at any
median of the £ — 1 numbers x,,...,x,. Since for k> 2 the set of medians of
Xqs.--»Xgqq 1S the same as the set of medians of x,,...,x,, the validity of the
proposition p,,, follows. Thus, by the principle of mathematical induction, P, is
true for all natural numbers 7.

The minimum value of /,(a) is now easily found. Let ¢ =|(n + 1) /2], the
greatest integer less than or equal to (n +1)/2. Then x, is always a median of
X, <x,< -+ <x, and thus min{A,(a)} = &, (x_.), which is found to be

(xn _xl) + (xn—l _x2) + o +(xn+1—c _xc)
n

, where

ntl—c=1€ if n is odd
c+1 if niseven.
Thus, for example, the MAD of the data 2,3,3,4,6,10 is

(10-2)+(6-3)+(4-3)
6 =2

and this value is achieved by any a between 3 and 4. The graph of A,(a) in this
case is shown in Figure 1.
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o

A Geometric Approach to Linear Functions
Jack E. Graver, Syracuse University, Syracuse, NY 13244-1150

Instead of drawing the traditional graphs, we will visualize linear functions as
transformations of the real line .. For example, the linear function f(x)= $x + 1
is illustrated by the 1-dimensional picture in Figure 1. In this picture, the
coordinates of the points on . are listed below the line with the function values
listed directly above. The action of this function on the line is indicated by the
arrows: 0 is mapped to 1, so an arrow originates at 0 and extends to 1; 2 is mapped
onto 2, an increase of %, so the arrow from 2 has length 2 and extends to the
right; and so on. From this picture, we perceive a very nice geometric description
for the action of f: It is the contraction by a factor of § about the point 5 (the
center of the contraction). Geometrically, it is clear that f is uniquely determined
by its slope % and its center 5. We will start our investigation by considering this
geometric observation in algebraic terms. We will then use our algebraic results to
study the geometry of the line, and finally we will use both our algebraic and our
geometric results to consider linear difference equations.

9 13 17 21 29 33 37 41
fo Y 5 ¥ % % 5 % % 5 5 9
X 0 1 2 3 4 5 6 7 8 9 10
— ——p » + - —~— -
Figure 1

The slope-center form of a linear function. Many elementary courses start with a
quick review of linear equations and their graphs. In these courses, we discuss the
two-point form, the point-slope form and the slope-intercept form of the equation
of a line. Our geometric approach motivates another useful form, the slope-center
form. Consider the linear function f(x)=ax + b. Our first task is to discover if f
has a center, or fixed point, and, if it does, to identify that point. Suppose x is a
fixed point of f; then x =ax + b, or (1 —a)x = b. Clearly:
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