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Approximating Solutions for Exponential Equations
Norman Schaumberger, Bronx Community College, Bronx, NY

To find x in 2% =15, everyone will suggest, “use logarithms.” But we are after
something different. We would like to improve students’ ability to manipulate
exponents and increase their skills in estimation by obtaining x without the formal
use of logarithms.

We begin by observing that 27 = 128 is approximately equal to 5° = 125. Thus,
we write

53427 or S5a27/3=2233...

Since 2%?219281--- = 5 our estimate is quite good (missing by only one-half of a
percent.)

Next we seek relations that can be used to estimate 3, 7, and 11 each as powers
of 2. We need only be concerned about prime integers since composites are
products of primes. Thus, we want to approximate primes p as p = 2" for rational x.

For p =2, clearly x = 1.

If p = 3, then 3*~2? yields

3 %23/2 (via IOgS, 3= 2].5849625 . )
If p=7, then 7>~ 48 =2%- 324232 =2"/2 yjelds
7a2""% (via logs, 7 = 223073%49),
If p=11, then 11~ 120 =2%-3-52%-2%2.27/3 = 24/6 yjelds
11224712 (via logs, 11 = 2439916y,

In general, pzwpz —1=(p—1)(p+1). Since p—1 and p + | are composite,
both factor into a product of primes all of which are less than p. Therefore, using
the preceding approximations for each prime less than p, we obtain an approxima-
tion for p itself.

This algorithm may or may not produce better approximations for p than other
generating relations. For example:
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34004, 524.07/3 =919/3 yields 3219712 2 2158333
which is better than 3~ ((3 + 1)(3 — 1))!/2 = 23/2,
52%(5 + 1)(5 _ 1) =23.323.219/12 2 955/12 yields 5 ~ 255/24 = 22.291666..4’
which is not as good as 5 ~2"/°.
7-3% = 63228 yields 7~ 20/(21%/12)" = 217/6 = 228933

which is better than 7~ 2'"/% These examples suggest that there is instructional
value in seeking approximate relations that yield better approximations 2%
(x, rational) for the primes.

These techniques also lend themselves to compound interest problems, where
equations such as (1.12)" = 1.4 frequently arise. Since

112 = (7-2) /52 ~ 217/ - 2%) /214/7 = 21/
and
14=7/5~2"7/6/27/3 =21/,

we find that 2'/®~2'/? and r ~3.0. Since 7 = 2.9689944 . . . , via logs, our result is
accurate to the nearest tenth.
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A General Method of Deriving the Auxiliary Equation for

Cauchy-Euler Equations

Vedula N. Murty and James F. McCrory, Pennsylvania State University, Middle-
town, PA

The object of this note is to present a method for obtaining the auxiliary equation
associated with the Cauchy-Euler linear differential equation of nth order

e X"y 4o, x4 ey 4y @ =0 (x>0), (CE),
where ¢; (0 < i < n) are constants with ¢, = 1 and where

» @ =y(x) and y")=i{y(x)} for i=12,...,n

dx'
For large values of n (specifically, for n > 4), the method described in textbooks to
derive the auxiliary equation is time-consuming and laborious. We believe that the
following approach is simple and elegant; it enables one to write the general
solution of any Cauchy-Euler linear differential equation with considerable ease.

The usual method for deriving the auxiliary equation associated with (CE),, is to
assume that y(x) = x™ is a solution of (CE),. Then

y(i) = m(m — ])(m — 2) . (m — i+ l)xm~i,
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