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Spherical Coordinates from Cylindrical Coordinates on a Torus
Timothy Murdoch, Washington and Lee University, Lexington, VA 24450-1799

During a lecture on triple integrals, I used cylindrical coordinates to compute the
volume of a solid torus, i.e., a doughnut. While explaining the geometry to my
students, I realized that spherical coordinates arise quite naturally from the double
cylindrical coordinates on the torus. This point of view might make spherical
coordinates more memorable; in any case, the discussion provides a good opportu-
nity to emphasize the geometry behind changes of coordinates in space.

The region T(R,h) in R obtained by revolving the disk (y —h)? +z% < R?
about the z-axis is the solid torus shown in Figure la (p. 386). This torus is
described in cylindrical coordinates (r, 6, z) by the inequality (r —h)* 4z < R%.
Thus the region in (r, 6, z)-space that corresponds to the solid torus is the right
circular cylinder C(R, h) of height 27 and base radius R, with central axis parallel
to the 6-axis, at a distance & (see Figure 1b). Hence

Volume(T(R, h)) =/ffT(R’h)dxdy‘dz=ff/C(R,h)rdrde dz.

Since the transformed integral in (r, 6, z)-space is a triple integral over a cylinder,
it makes sense to change variables again using (slightly modified) cylindrical
coordinates ( p, ¢, ¢):

r—h=psin ¢, Z=pcos ¢, 0=1¢_. (D)
Note that p measures the radial distance from the axis of the cylinder, and ¢ is
the angle measured from the ray parallel to the positive z-axis through the axis of

the cylinder at 6 = ¢, as indicated in Figure 1b.
One readily computes that

a(r,0,z) B
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Figure 1
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JI[, rdrdodz=[[[ (psing+h)pdpdsde,

(R, h)

where W is the rectangular region [0, R] X [0,27] X [0,27] in (p, ¢, {)-space
shown in Figure 1lc. Thus

. R 27 2w .
fff ( psm¢+h)pdpd¢d§=f f f (psin¢+h)pd{dpdp
w 0’0 ‘o
=2w/Rf2"(psin¢+h)pd¢dp=2w2R2h.
0“0
The alert reader will have spied in the triple integral over W the appearance of
spherical coordinates in the form of the integrand (psin ¢ +h)p. In fact, by

letting & = 0 we see that the integrand becomes the Jacobian determinant p? sin ¢
for the transformation to spherical coordinates. Note that when 4 =0 the coordi-
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Figure 2

nate change (1) becomes

r=psin ¢, z=pcos ¢, 0=2¢, (1)

and combining this with “ordinary” cylindrical coordinates x =rcos 0, y = r sin 6,
z =z gives the standard spherical coordinate transformation

X = psin ¢ cos 0, y=psin ¢sin 0, Z = pcos ¢.

Thus, the spherical coordinate transformation arises as a degenerate case of the
double cylindrical coordinates on the torus. A natural question to ask at this point
is “How are these coordinates related to the sphere?” Note that as 4 — 0, the
torus passes through itself and collapses to a ball of radius R. Each point in the
ball is covered twice (except for the poles, which are covered infinitely many
times). To remedy this duplication we restrict ¢ to range from O to =. It is easy to
see that the resulting transform is one-to-one (except, again, at the poles). Figure 2
shows graphically how the coordinates ( p, ¢, 6) on the outer “half” of the torus
become the standard spherical coordinates on the ball p<R, as & — 0.
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MAD Property of Medians: An Induction Proof
Eugene F. Schuster, University of Texas at El Paso, El Paso, TX 79968-0514

Recent elementary proofs of the widely known fact that any median for a sample
of n numbers x; <x, < -+ <x, minimizes the mean absolute deviation (MAD)
function

|x,’_ al

1
hn(a)=;.

iMs

have appeared in [1] and [2]. Since this is a sequence of propositions, one for each
positive integer, it seems natural to prove them using a mathematical induction
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