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Bounding the Roots of Polynomials
Holly P. Hirst (hph@math.appstate.edu) and Wade T. Macey, Appalachian State
University, Boone, NC 28608 '

In these days of ubiquitous graphing devices, a standard problem in mathematics
courses at all levels asks the student to generate a graph of a polynomial function
on an interval that contains all the real roots. In this article we will discuss some
simple bounds on the roots of a polynomial function based upon its coefficients.
The results actually give disks in the complex plane that are guaranteed to contain
all of the roots, real or complex, of the polynomial.

The bounds we describe are not new. The novelty of our presentation lies in the
simplicity of the proof of the first theorem, which uses only elementary properties
of absolute values and thus is easy to understand and apply even for pre-calculus
students. One of the bounds on the roots that we will present was first reported by
Cauchy in 1829. After Cauchy’s work was published, bounding roots of polynomials
remained a popular topic of study for over a century; many people produced related
results using widely differing techniques from areas such as linear algebra and com-
plex analysis. Thus the study of bounds for the roots of polynomials in terms of the
coefficients convincingly demonstrates the interconnections between different fields
of mathematics.

We found an added bonus when we looked into the history of this topic—a
well documented historical record of the development of an idea that is accessible
to undergraduates. Many results about polynomial roots are described in detail in
one convenient source [3], which gives an excellent account of the activity in this
area over the past two centuries. We recommend it for all who study polynomials,
regardless of their particular interest.

We begin with our main result.

Theorem 1. Given f: C — Cdefined by f (z) = 2" + an_12""1 + -+ + a1z + ao,

where ap, a1, ...,an € C, and n a positive integer. If z is a zero of f, then
n—1
2] < maz{1,> " lal . (1)
i=0
Proof. Let z be a zero of f. If ag = a1 =+ = ap—1 = 0, so f(z) = 2", then
|z] =0 < 1.
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Now suppose that at least one of ag,a1,as,...a,—1 is not zero. If the modulus of
our root z is less than or equal to 1 then (1) is satisfied, so we need only show that
if |z| > 1 then

1< 2] < lan—a] + -+ laa] + laol. (2)

Factoring out the term of highest degree gives

- an—1  Gn-2 ai ao
fR=ale ettty S B

Since z # 0 and f(z) = 0, the second factor must vanish, so

ap—1 An—2 a1 ao
—-1= + +-+ + —.
z 22 zn—1 Zn
The triangle inequality then gives
Ap—1 Ap—2 ai o
e e 2 2]
- 2 22 n—1 n

1 1
But |z| > 1 implies that |2*| > |z], and so - < — , for 2 < k < n. Thus

EAIINEL
1< |an1] + |an—2] +..._|_|_al_| +|_ao_|’
2| |2 2l Izl
and multiplying through by |z| yields (2). O '
Notice that the last inequality is strict unless ap = a3 = -+ = ap—s = 0. Thus

inequality (2) is strict unless f has the form f (z) = 2™ —az™"1, a # 0. This polyno-
mial has roots 0 and a, so when |a| > 1 this polynomial gives the only case where
equality is achieved in (2).

This theorem can be used to help pre-calculus students find an interval containing
all the roots, which can be a useful step before plotting the graph as part of an
investigation of a given polynomial.

Example. Find an interval that is guaranteed to contain all of the real roots of the
polynomial 3z5 + 523 — 922 + 4z + 12.

Solution. To apply Theorem 1, we must use the corresponding monic polynomial
z® + 22% — 32% + §z + 4. Since }_|a;| =5 + 3 + § + 4 = 10, we conclude that the
real roots will lie in the interval (—10,10).

Theorem 1 is similar to many results that have been discovered during the last
two centuries. The following theorem was published by Cauchy in 1829 [2].

Theorem 2. (Cauchy) A/l zeros of the polynomial f (z) = 2™ + ap_12"" L + -+ +
a1z + ag lie in the disk

2] <1+ max Jak|.
0<k<n—1

We may assume z # 0.
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Proof. Cauchy’s bound requires for its proof the triangle inequality and the formula
for the sum of an infinite geometric series. By the triangle inequality,

()] = 12" = (|an—12"""] + |an—22" 72| + -+ + |a12| + |acl)

an—1 An—2 ay ag
el Ct e Bl B P B )R
If M= max |agl, it follows that
0<k<n—1
1
If@) = lz* [1-M ) —
j=1 ||

oo
> [ 1=M |2~
Jj=1

For |z| > 1, the geometric series converges with sum 1/ (|z| — 1), giving

@I > 1 (1- )

lo| -1 )~
From this inequality we see that if |z| > 1 + M, then |f(z)| > 0. Thus, if z is a zero
of f, we must have |z| <1+ M. O

Cauchy’s bound is a bit simpler than that of Theorem 1; however, the proof relies
upon knowledge of infinite series. Also, Cauchy’s disk is larger for many polynomials
than the disk from Theorem 1. For example, if f(z) = 2" — az""!, where |a| >
1, Theorem 1 gives |z| < |a|, while Cauchy’s bound is |z| < 1 + |a|. As another
interesting case, consider f(z) = 2" — a, which has n roots, all of modulus 1/]al.
If |a] < 1, Theorem 1 gives the bound |z| < 1 and if |a] > 1, it gives the bound
|z] < ]al]. In either case Cauchy’s disk is larger: |z| < 1 + |a|. On the other hand, for
the polynomial in the example above, Cauchy’s bound is sharper: |z| < 5.

Students who have had an introduction to eigenvalues and eigenvectors may be
surprised by the following proof of Theorem 1. We should not overlook such oppor-
tunities to demonstrate relationships between different areas of mathematics. Recall
that the companion matrix of the monic polynomial

f(2)=2"4+an 12"+ an 22" 2+ +tarz+ao

is the n X n matrix

—Qn—1 An—2 —ai —agp
1 0 0 0
C= 0 1 0 0
0 0 1 0

The proof by induction that the characteristic polynomial det (zI — C) is f(z)
makes an excellent exercise on the cofactor expansion of determinants [5]. Thus the
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roots of any polynomial are the eigenvalues of its companion matrix, and we can
bring the machinery of linear algebra to bear to find properties of the eigenvalues.

The next theorem is simple to prove directly from the definition of eigenvalue.
The proof can be found in many linear algebra texts, such as [4].

Theorem. (Gershgorin) The eigenvalues of an n x n matrix A are contained in
the union of the disks in the complex plane given by

Diz z lz—aiiISZ[aijl , i:l,...,n.
J#

When Gershgorin’s theorem is applied to the companion matrix of the polynomial
f, the resulting disks are

n—2
Di={z: |z+ana| <D Jailp, Di={z:]z|<1}, i>1
=0

Since

|z = (0 — an-1) + (2 + an—1)| < |an—1] + |z + an-1],

the points in D; satisfy
n—1
‘Z| < Z |ai|a
i=0

and so Gershgorin’s theorem implies Theorem 1. (Again, for |z| > 1 we get strict
inequality here except for f(2) = 2™ —az"" 1)

It is possible to look at these theorems from yet another interesting point of view—
that of complex analysis. Rouché’s theorem can be used to derive bounds on the
roots of polynomials similar to those in Theorems 1 and 2 [1]. The real strength of
this approach is that Rouché’s theorem can be used to determine the exact number
of zeros in a given region of the complex plane.

It was intriguing to us that Theorems 1 and 2 have simple proofs, one of which has
been known since 1829, and yet most recent references to these results cite more
sophisticated proofs using Gerschgorin’s theorem from linear algebra or Rouché’s
theorem from complex analysis.
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