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A “proof without words” of the theorem.

The reader is encouraged to try the following exercises, both by the preceding
method and by a standard method for comparison. Answers are given below.*

1. fl arctan(e*) dx 2. fl arccos(x?) dx

~1 -1

dx

[ 4 [V X+ T —Va? 343 dx

0x+Vx2—2x+2 0

dx - dx

5. f4 6. [2 =

0 4+2° o Ttem=

o

Designing a Rose Cutter
J. S. Hartzler, Pennsylvania State University-Harrisburg, Middletown, PA 17057-
4898

Most students of mathematics appreciate demonstrations of the relevance of
mathematics in their chosen fields of study, and engineering students essentially
insist on them. While almost all ordinary differential equations books include a
brief discussion of first-order differential equations of the form y' =g(y/x), few
provide an example from engineering. I offer one here.

The problem is to design blades for a pair of pruning shears, consisting of one
straight blade and one curved blade, with the specification that the angle between
the two blades be constant regardless of how far the jaws are open.

Figure 1 shows the blades in the open position. The edge of the straight blade is
the segment OB, with the hinge point at the origin. We assume that 6, = /3
radians and that each blade measures 5 cm from the hinge point to the tip, so

*Answers: 1. 7/2; 2. 7; 3. 1; 4. 0; 5. 1/2; 6. .
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|0A|l =|0B| = 5. Now we fix the curved blade in the open position and allow the tip
of the straight blade to move along the circular arc AB as the jaws close.

Figure 2 shows the straight blade in an arbitrary intermediate position. The
design specification requires that B, be constant. For convenience, we select
Bo=m/4. Let the function representing the curved blade be y =f(x) and the
point P of intersection of the blades be (x, y).

The slope of the tangent line [ can be expressed as dy/dx =tan(a). But
a=pB,+86,s0

o
- tan Z + tan @
tan(a)=tan(z+0) = = .
1—tan —tané

Because tan 8 =y /x, we have the differential equation

y
dy 1+;
T y
dx 1-2

X

as a model for the curved blade edge.

This differential equation becomes separable by our introducing the new depen-
dent variable v =y/x, which implies that y’=uv +v'x. Thus, the differential
equation becomes

1+v 1—v 1
> dv=—dx.
1+v X

Integration yields

1
Arctan (v) — 5 In(1+v?)=Inlx[+C, or

1 2
Arctan(z) ——=In{1+ y_z
X 2 X

=Inlx|+ C.

As often happens with separable equations, this implicit general solution does
not yield a solution in the form y = f(x), so does not lend itself to recognition of
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Figure 3

the shape of the curved blade. But further simplification yields Arctan(y/x) —
Inyx?+ y? = C, which suggests...polar coordinates! The polar form of the gen-
eral solution is the logarithmic spiral § —In r = C or r = ke®.

Since the polar point (5,7 /3) is on the curve, k = 1.8 and the solution to our
design problem is

r=1.8e¢" for0<@<m/3.

Figure 3 shows a plot of the actual blade shape, which could be scaled to build a
template for the blade manufacturing process.

Acknowledgment. This problem was suggested to the author by Helmut Paulo who teaches mathemat-
ics and physics in Lorrach, Germany.

o

A Visual Proof of Eddy and Fritsch’s Minimal Area Property
Robert Paré, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

In a recent Classroom Capsule, R. H. Eddy and R. Fritsch [CMJ 25 (1994)
227-228] established a remarkable fact: For any convex curve I' on the interval
AB, the point at which the tangent minimizes the shaded area in Figure 1 is the
midpoint C of AB.

This fact is all the more interesting because it has a very simple geometric proof
that does not use calculus.
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