A particular case in point is k=3 and j = 5. Here we easily solve (11),
(n+5)(n+4)(n+3)=ay+an+an(n—1)+an(n—1)(n-2),
and obtain
D3(x%*) = (60 + 60x + 15x2 + x)e*.

For further details and related applications of (3), see Richard Brualdi’s Introduc-
tory Combinatorics, North Holland, New York, 1983; E. S. Page and L. B. Wilson’s
An Introduction to Computational Combinatorics, Cambridge Computer Science
Texts 9, 1979; and John Riordan’s An Introduction to Combinatorial Analysis, John
Wiley & Sons, New York, 1958.

Generalizations of a Complex Number Identity
M. S. Klamkin, University of Alberta, Edmonton, Alberta and V. N. Murty,
Pennsylvania State University, Middletown, PA

A recurring exercise that appears in texts on complex variables is to show that if w
and z are complex numbers, then

lw + |z| =|(w+2)/2=Vwz|+]|(w+2)/2+ Vwz|.

In problem 368, this journal, the first author asked for a generalization to three
complex numbers. In this note, we give further generalizations to any number of
variables and to any dimensional Euclidean space by replacing the complex num-
bers by vectors.
First, we can simplify the identity by getting rid of the bothersome square roots.
Letting w = z2 and z = z2, we get
2|z + 12} = |21 = 2o + |z + (1)

Geometrically, we now have that the sums of the squares of the edges of a
parallelogram equals the sum of the squares of the diagonals. Consequently, by
considering a parallelepiped, one generalization is that

2
4|12+ |22+ |z3)7 ) = |+ 2tz + |2+ 2= 2
+|zl—z2+z3|2+|—zl+z2+z3|2. 2)

Here, z, z,, z; can be complex numbers in the plane or vectors in space. For a
proof, assuming the z, are vectors, just note that

2 _ _ 2
|21+ 2, = 23] = (2, + 2, — 23)
=zl + 22423 +2z2,-2,— 2z, 2,— 22, 25, etc.

Geometrically, we have that the sums of the squares of all the edges of a paral-
lelepiped equals the sums of the squares of the four body diagonals. Also to be
noted is that (1) is the special case of (2) when z;=0. A generalization to
n-dimensional space (for an n-dimensional parallelepiped) is immediate, i.e.,

Yy =T (tntnt - £z,), (3)
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where the summation on the right is taken over all the 2" combinations of the +
signs.
For a generalization in another direction, note that (1) can be rewritten as

|Z1|2 + |Z2|2 = I(Zl - 22)/\/5|2 + |(21 + Zz)/\/2—|2-

In the real plane, the transformation x’ = (x — y)/V2 , Y =(x+y)/ V2, represents
a rotation of the coordinate axes by 45° and preserves all distances, i.e.,

Jx2+y2 = x>+ 2. For the case here, the value of |z|2+ |z,|* is preserved
under an orthogonal transformation. More generally (as is known), if z, z,,..., z,
are complex numbers (or vectors in space) and we make the transformation
Z’' = MZ where M is an arbitrary real orthogonal matrix and the transpose matrices
of Z and Z’ are

ZT=(z1,29,.-452,) and Z'T=(z{,z3,...,2.),

then
Yz = Xlzf?
and its proof is quite direct:
2lz/)*=Yz/z=2"Z = (MZ)(MZ)=Z"TM™MZ=2"Z=Y |z,

(since M is orthogonal MM = I'). The proof for vectors is the same except that the
multiplication of the two vector matrices Z” and Z is via the scalar dot product.

More generally, the matrix M can be replaced by a complex matrix U if it is
unitary, i.e., UTU = I. Finally, the identity (3) can be generalized by replacing the
z,’s by z/’s and then letting Z’ = UZ. For a simple example in (2), let

z{ =izycosf +iz,sinf, zj=2z;sinf —z,cos 0, zi=12,4

where 6§ is an arbitrary real angle.

A Generalization of lim Vn! /n=e""
n— .
Norman Schaumberger, Bronx Community College, Bronx, NY

In “Alternate Approaches to Two Familiar Results” [CMJ 15 (November 1984)
422-423], we gave an elementary proof of the familiar result

(n!)l/"
lim

n—oo n

=e L (1)
The following generalization of (1) states that for any nonnegative integer s:
(1(1:) . 2(2:) . n(ns))l/n“']

nl/G+D

lim
n— oo

=e-—l/(s+1)2‘ (2)
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