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Introduction

Let A4 and B be distinct points on the same side of a straight line L in the xy-plane.
The shortest-path problem in calculus is to find the point U on L such that the path
length AU+ UB is minimal. Let A =(a, b), B=(c, d). Formally, the problem is to
minimize the function F= \/(a —u)’+(b-v)’ + \/(c —u)’+(d—v)?, where
(u, v) is any point on L. The usual minimization technique (using calculus) works,
but a simple geometric solution is obtained by reflecting B through L to the point
D. The situation is shown in Figure 1. The line segment DA intersects L in the

Figure 1

desired point U. The aim of this paper is to present a similar reflection-style
solution, where L is replaced by the unit circle C. As explained later, equipped with
cardboard and /or a symbolic and graphing package, students and instructors may
find this problem appealing for an independent project or for use in a computer lab
setting.

Main problem. Let C be the unit circle with parametric equations 7(¢) = (u, v),
where u=cost, v=sint,0 <t < 2w. We will generally write U= (u, v). Let A=
(a,b) and B=(c, d) be points outside of C, and assume B is “visible” from A.
That is, the line segment AB does not intersect C (it is permissible if 4B is tangent
to C, but this situation has the trivial straight line solution). The problem is to find
the shortest path from A to C to B. Throughout the discussion we assume, without
loss of generality, B = (c,0), with ¢> 1, and 4 is in the upper half-plane. Figure 2
shows the situation.

We seek to minimize the function

F(1) = \/( a—u)+(b-v)’ + \/( ¢ —u)’ + v* . Differentiating with respect to
¢, equating to 0, and rearranging terms, we get

(a—uw)u' +(b—-v)V 3 (u—c)yu +uv/

\/(61—LL)Z+(b—-v)2 - \/(c—u)2+v2 .

(1)
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Consider Figure 3 where an arbitrary value of ¢ is depicted. Let @ and B be the
angles of incidence and reflection, respecﬂyely. The numerator on the left side of
(1) is the scalar projection of the vector UA onto the unit tangent vector (¢, v') =
(—sin t,cos #) to C at U. Thus, the fraction on the left side of (1) is cosa. Similarly,
the fraction on the right side of (1) is cos 8. It follows that @ = 8, as some may have
expected.

Orthotomic. Solving (1) for ¢ is impossible in general. Instead, we develop a
geometric solution obtained by reflecting the point B through the circle C. To
motivate this, consider the inverse problem. Suppose U is a fixed point on C. For B
fixed, we determine the locus of points A for which U is the minimizing point in
the shortest path problem. Given U and B, the angle of reflection B is determined.
Hence, the desired locus is the ray with initial point at U forming angle of incidence
a equal to B. Referring to Figure 4, a convenient way to construct tlis_)is to let D be
the reflection of B in the tangent line to C at U. Then the ray DU contains the
required locus. That the correct locus has been constructed follows from the
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congruence of ADEU and ABEU. If U is allowed to vary, we obtain a locus of
reflection points D, the equation of which is determined as follows. First, the point
E in the figure i is obtained from the vector projection of the vector BU ontq the unit
normal vector N=(— U, - v) to C at U. In fact, BE= (BU-N)N. Thus, BD, having
the same direction as BE but twice the magnitude, is given by

— —_— =\ =
BD= Z(BU-N)N. (2)

The locus of reflection points D is a curve, called the orthotomic of C (relative to
fixed B). The orthotomic is well known in the study of curves. The reader may
obtain additional background by consulting [1], [3], or [4]. For our purposes, the
orthotomic is the generalized version of the reflection used in the linear shortest
path problem. Recalling U= (u, v) = (cos #,sin #) and B =(c,0), (2) gives

D—(c,0)=2[(u—c,v) (—u,-v)](—u,—v)=2(1—cu)(u,v). (3)
The result is shown in Figure 5, where U has been allowed to vary over the entire

circle. In fact, the orthotomic of C (relative to a point outside of C) is a familiar
curve. As ¢ varies, the right side of (3) becomes the polar coordinate graph of

e

Figure 5
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JL6)=2(1—ccos ), which we recognize as a limacon (rotated, for general B)
with a loop..

Solution. Returning to the main problem, we are re given points A and B, and seek
the point U on C to minimize the path length AU+ UB. First, reflect B through C
to get the orthotomic. The question is how to connect the orthotomic to A. In the
linear case where the orthotomic degenerates to a single point, the situation is clear.
In the present case, let D be the reflection of B through C at any point U. As
descrlbed above (1nverse problem) the minimizing U is that point for which the ray
DU passes through A. To find the minimizing U, we develop a simple mechanical
device which does the job. First, each point on the orthotomic may be constructed
geometrically as follows. Refer to Figure 6 and note that ¢ is the distance from B to

P

Figure 6

the origin O. Fix a value of ¢ and let U= (cos ¢,sin ¢). We seek the corresponding
point D on the orthotomic. Let P= 2(cos t,sin t) which is the point at distance_) 2
from O along the ray OU. Construct angle ¢ counterclockwise from the > ray PU,
giving a new ray PR. The point D is at distance ¢ from P along PR. This
construction is correct, since AORP and A DBR are similar isosceles triangles. They
have a common perpendicular bisector to their bases which passes through their
common vertex and is tangent to C at U. Hence, D is the reflection of B through
the tangent line to C at U. This construction has an easy physical realization, which
serves as the model for our mechanical solution. Using the terminology of [2] and
[4], the orthotomic under study is an epitrochoid, and is obtained by attaching a
tracing point at distance ¢ from the center of another unit circle and rolling the
structure along the circumference of C. In Figure 6, one can easily imagine the
rolling circle centered at P. Figure 7 illustrates a mechanical device which can be

Figure 7
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used to solve our shortest-path problem. The device consists of two unit circles, one
fixed and one rolling, connected by a coupling of length 2 through their centers. A
pin U is placed at the midpoint of the coupling. A tracing point D is at the end of
an arm of length c¢ attached to the center of the rolling circle. Finally, a pointer is
hinged to this arm at D, The pointer is grooved and straddles the pin U. At all times,
the pin U is located at the contact point of the two circles, and the pointer lies on
the ray DU. Figure 8 shows the solution of the shortest path problem when

Figure 8

B =1{(c,0). If the rolling circle is initially placed in contact with C at the point (1, 0),
then the tracing point D is at (2 —¢,0) and the pointer coincides with the x-axis
pointing to the right. In Figure 8, the rolling circle has moved through an angle ¢
until the pointer is over A. The location of the pin U= (cos ¢, sin ) is the minimizing
point we seek.

The authors constructed the machine in Figure 7 out of cardboard, and pro-
grammed a computer simulation. Perhaps ironically in this day of teaching and
learning calculus with its concomitant use of technology, we found the cardboard
machine particularly rewarding to construct and experiment with. Neither project
was difficult, and it is anticipated that one or the other (or both) would be
appreciated by calculus students working on this problem.
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