Another Proof of the Irrationality of $\sqrt{2}$

Enzo R. Gentile, Buenos Aires

To this end we shall use the following property of the prime 3:

If
$$a, b \in \mathbb{Z}$$
, then $3|(a^2 + b^2)$ if and only if $3|a$ and $3|b$.

This property is clear, since the quadratic residues modulo 3 (that is, the squares mod 3) are 0 and 1. Then, assume, as usual, that $\sqrt{2} = p/q$, where p and q are relatively prime natural numbers. We have $p^2 = 2q^2$ and hence $p^2 + q^2 = 3q^2$. But then $3|(p^2 + q^2)$, and therefore 3|p and 3|q, a contradiction.

Two remarks are in order:

- 1. The same argument proves the irrationality of \sqrt{n} , for any $n \in \mathbb{N}$, $n \equiv 2 \pmod{3}$.
- 2. The prime numbers p satisfying:

$$a, b \in \mathbb{Z}$$
, $p|(a^2 + b^2) \Rightarrow p|a$ and $p|b$,

are exactly those of the form 4m + 3.

For a similar proof see [Robert Gauntt, The irrationality of $\sqrt{2}$, American Mathematical Monthly 63 (1956) 247] or [V. C. Harris, On proofs of the irrationality of $\sqrt{2}$, Mathematics Teacher 64 (1971) 19].

Math in the Eyes of Madison Avenue

"VECTOR ANALYSIS: $C = SQRT(A^2 + B^2) = OUR$ GRAPH CHECK FORMULA FOR SHIRTING SUCCESS!

We took a geometrically simple idea and transformed it into a powerful formula for success."

An advertisement for shirts in the catalog of Huntington Clothiers, 185 Alum Creek Dr., Columbus, Ohio 43209