Proof. To obtain (1) we use the Law of Sines in the five triangles A; By As, A1 Bo As,
A3B3A4, A4B4A5, and A5B5A1, ﬁnding

Al Bl sin a9 A232 sin as Ang sin Q4
Bi1A;  sina)’ ByAs  sina,’ BsAs  sina}’

A4Bs  sinas
=
B4As  sina)

A5 B5 sin ai

and =
. 7
BsA;  sinag

respectively. Since ax = aj, for each k = 1,...,5, we can multiply these five equa-
tions; (1) is the result. Equation (2) is obtained in a similar way by using the Law of
Sines in the five triangles B1A3By, B4A1 By, BoAyBs, BsAsBs, and B3 AsB;. [

Here is another simple fact about the pentagram that may be surprising and ap-
pealing to the beginning student: The sum of the angles at the points of the star is
180°. One way to see this is to observe that a}f = ZBs + £By, ay = £B3 + £Bs,
and ZB; + a} + a2 = 180° and then compute /By + /Bo + £Bs + /By + ZBs.
This same result can be derived from the fact that the sum of the exterior angles of
any convex n-gon is 360°. Thus, the five triangles containing the points of the star
have a1 + az + as + as + a5 = 360° and a} + af + af + ajy + af = 360°. This leaves
5(180°) — 360° — 360° = 180° for LBy + £By + /B3 + 4By + £Bs.

When Is “Rank” Additive?
David Callan (callan@stat.wisc.edu), University of Wisconsin, Madison, WI 53706

Most matrix theory books mention that rank is subadditive—that is, rank (A + B) <
rank (A)+ rank (B)—but they rarely address the question of equality. Recall that the
rank of a matrix A is defined as the dimension of its column space C(A). Also, the
rank is invariant under transpose: rank (A) = rank (AT); or, what is the same, the
rank of A is the dimension of the row space R(A). (See [2] and [3] for one-paragraph
proofs of this fundamental fact.) This leads to a useful alternative description of the
rank: Rank (A) is the size of the largest invertible submatrix of A.

The subadditivity of rank is easily established: C'(4 + B) C C(A) + C(B), hence
rank (A+B) = dim C(A+ B) < dim[C(A)+ C(B)] < dim C(A)+dim C(B) = rank
(A)+rank (B). Since dim(U + V) = dim(U) + dim(V) — dim(U N V) for any two
subspaces U and V, equality in the second inequality above implies C(A)NC(B) =
{0}. Thus disjointness of the column spaces of A and B is a necessary condition
for additivity of rank. Curiously, a recent monograph [4] asserts incorrectly that this
condition is sufficient.

Counterexample. A = é), B= <1> Then C(A)NC(B) = {0}, but rank (A) =
rank (B) = rank (A+ B) =1).

However another necessary condition is disjointness of the row spaces (since rank

is invariant under transpose). It turns out that these two conditions together are
sufficient.
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Theorem. [let A and B be m x n matrices over a field F'. Then

rank (A + B) < rank (A) + rank (B),

with equality if and only if C(A) N C(B) = {0} and R(A) N R(B) = {0}.

Proof. It only remains to show the “if” part. By suitable row and column operations,

Lr O), where r = rank (A) and I, is the r x r

we can reduce A to the form < 0 o

I, 0
0 0
and @—the products of the elementary matrices that perform the row and column
operations. Now, pre-multiplication or post-multiplication by an invertible matrix
does not affect the rank, so

identity matrix.In other words, PAQ = < ) for suitable invertible matrices P

rank (PAQ) = rank (A), rank (PBQ) = rank (B),
and

rank (PAQ + PBQ) = rank [P(A + B)Q] = rank (A + B).

Also, since invertible linear transformations preserve dimensions of intersections
of subspaces, if C(A) N C(B) = {0} and R(A) N R(B) = {0}, then C(PAQ) N
C(PBQ) = {0} and R(PAQ) N R(PBQ) = {0}. Thus, since both hypotheses and
conclusion are unaffected by pre- and post-multiplication by invertible matrices, we
may assume that A = (IT O).
0 0
Let s = rank (B) and let U be an m x s matrix consisting of s linearly independent
column vectors that span C(B). Then B = UV, where V is the s X n matrix whose
entries in any column are the coefficients in the expression of the corresponding
column of B as a linear combination of the columns of U. Clearly U has rank s; so
does V, since R(B) C R(V). Rank (V) = dim R(V) < s, the number of rows in V.
Our plan is to exhibit an invertible (r+s) x (r + s) submatrix of A+ B, which will
mean that rank (A + B) > rank (A)+rank (B), as required. To this end, partition
UandVasU = (U
Up
claim that U, has independent columns. To see this, suppose U,z = 0 for some
U6x> is in C(A) N C(B) = {0} since, by our special
choice of A, C(A) consists of the vectors in F™ all of whose entries after the first
r are 0. Thus Uz = {0}, and since U has independent columns, it follows that
x = 0. This shows that the columns of U, are independent; in other words, rank
(Up) = s. Hence U, has an invertible s X s submatrix Us whose rows are indexed by
asubset J of {r+1,...,7+p = m}. Similarly, by considering transposes and using
the row space hypothesis, the same argument shows that V;, has an invertible s x s
submatrix V; whose columns are indexed by a subset K of {r +1,...,r +q = n}.
Now, the (r 4+ s) x (r 4+ s) submatrix of B with rows indexed by {1,2,...,7} U J

. .. [ Ur _(UVe UV
and columns indexed by {1,2,...,7} U K is (Us)(Vr Vs) = <UsVr U3V3>’ SO

and V = (V;. V), where U, is 7 x s and V; is s x r. We

vector x € I'*. Then Uz =

L+ UV, UV

: ~1
ULV, ULV, ) Subtracting U,.U;

the corresponding submatrix of A + B is (
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times the second block row from the first (an operation that does not affect the

L 0 ) with determinant det(7,.) det(UsVs) =

determinant) gives the matrix ’
)8 UV, UV,

det(U,) det(V,) # 0.

We have exhibited an invertible (r + s) X (r + s) submatrix of A + B. Hence rank
(A+ B) = rank (A) +rank (B), and this proves the theorem.
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Proof of a Common Limit

1

. X .
From the figure, Inx < %x Thus, lim — = lim —— =0.
r—oo0 e% =00 eZ-InT

—Alan H. Stein and Dennis McGavran
University of Connecticut
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