*Proof.* To obtain (1) we use the Law of Sines in the five triangles  $A_1B_1A_2$ ,  $A_1B_2A_3$ ,  $A_3B_3A_4$ ,  $A_4B_4A_5$ , and  $A_5B_5A_1$ , finding

$$\frac{A_1B_1}{B_1A_2} = \frac{\sin a_2}{\sin a_1'}, \quad \frac{A_2B_2}{B_2A_3} = \frac{\sin a_3}{\sin a_2'}, \quad \frac{A_3B_3}{B_3A_4} = \frac{\sin a_4}{\sin a_3'},$$

$$\frac{A_4B_4}{B_4A_5} = \frac{\sin a_5}{\sin a_4'}, \quad \text{and} \quad \frac{A_5B_5}{B_5A_1} = \frac{\sin a_1}{\sin a_5'},$$

respectively. Since  $a_k = a_k'$  for each k = 1, ..., 5, we can multiply these five equations; (1) is the result. Equation (2) is obtained in a similar way by using the Law of Sines in the five triangles  $B_1A_3B_4$ ,  $B_4A_1B_2$ ,  $B_2A_4B_5$ ,  $B_5A_2B_3$ , and  $B_3A_5B_1$ .  $\square$ 

Here is another simple fact about the pentagram that may be surprising and appealing to the beginning student: The sum of the angles at the points of the star is  $180^{\circ}$ . One way to see this is to observe that  $a'_1 = \angle B_2 + \angle B_4$ ,  $a_2 = \angle B_3 + \angle B_5$ , and  $\angle B_1 + a'_1 + a_2 = 180^{\circ}$  and then compute  $\angle B_1 + \angle B_2 + \angle B_3 + \angle B_4 + \angle B_5$ . This same result can be derived from the fact that the sum of the exterior angles of any convex n-gon is  $360^{\circ}$ . Thus, the five triangles containing the points of the star have  $a_1 + a_2 + a_3 + a_4 + a_5 = 360^{\circ}$  and  $a'_1 + a'_2 + a'_3 + a'_4 + a'_5 = 360^{\circ}$ . This leaves  $5(180^{\circ}) - 360^{\circ} - 360^{\circ} = 180^{\circ}$  for  $\angle B_1 + \angle B_2 + \angle B_3 + \angle B_4 + \angle B_5$ .

## \_\_\_\_\_ o \_\_\_\_

## When Is "Rank" Additive?

David Callan (callan@stat.wisc.edu), University of Wisconsin, Madison, WI 53706

Most matrix theory books mention that rank is subadditive—that is, rank  $(A+B) \le \text{rank } (A) + \text{rank } (B)$ —but they rarely address the question of equality. Recall that the rank of a matrix A is defined as the *dimension of its column space* C(A). Also, the rank is invariant under transpose: rank  $(A) = \text{rank } (A^T)$ ; or, what is the same, the rank of A is the dimension of the row space R(A). (See [2] and [3] for one-paragraph proofs of this fundamental fact.) This leads to a useful alternative description of the rank: Rank(A) is the size of the largest invertible submatrix of A.

The subadditivity of rank is easily established:  $C(A+B) \subseteq C(A)+C(B)$ , hence rank  $(A+B)=\dim C(A+B) \leq \dim[C(A)+C(B)] \leq \dim C(A)+\dim C(B)=\mathrm{rank}$   $(A)+\mathrm{rank}$  (B). Since  $\dim(U+V)=\dim(U)+\dim(V)-\dim(U\cap V)$  for any two subspaces U and U, equality in the second inequality above implies  $C(A)\cap C(B)=\{0\}$ . Thus disjointness of the column spaces of A and B is a necessary condition for additivity of rank. Curiously, a recent monograph [4] asserts incorrectly that this condition is sufficient.

Counterexample. 
$$A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
,  $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ . Then  $C(A) \cap C(B) = \{0\}$ , but rank  $(A) = \text{rank } (B) = \text{rank } (A+B) = 1$ ).

However another necessary condition is disjointness of the row spaces (since rank is invariant under transpose). It turns out that these two conditions together are sufficient.

**Theorem.** Let A and B be  $m \times n$  matrices over a field F. Then

$$\operatorname{rank}(A + B) \le \operatorname{rank}(A) + \operatorname{rank}(B),$$

with equality if and only if  $C(A) \cap C(B) = \{0\}$  and  $R(A) \cap R(B) = \{0\}$ .

*Proof.* It only remains to show the "if" part. By suitable row and column operations, we can reduce A to the form  $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ , where r = rank (A) and  $I_r$  is the  $r \times r$  identity matrix. In other words,  $PAQ = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$  for suitable invertible matrices P and Q—the products of the elementary matrices that perform the row and column operations. Now, pre-multiplication or post-multiplication by an invertible matrix does not affect the rank, so

$$rank(PAQ) = rank(A), \quad rank(PBQ) = rank(B),$$

and

$$rank (PAQ + PBQ) = rank [P(A + B)Q] = rank (A + B).$$

Also, since invertible linear transformations preserve dimensions of intersections of subspaces, if  $C(A) \cap C(B) = \{0\}$  and  $R(A) \cap R(B) = \{0\}$ , then  $C(PAQ) \cap C(PBQ) = \{0\}$  and  $R(PAQ) \cap R(PBQ) = \{0\}$ . Thus, since both hypotheses and conclusion are unaffected by pre- and post-multiplication by invertible matrices, we may assume that  $A = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ .

Let s = rank (B) and let U be an  $m \times s$  matrix consisting of s linearly independent column vectors that span C(B). Then B = UV, where V is the  $s \times n$  matrix whose entries in any column are the coefficients in the expression of the corresponding column of B as a linear combination of the columns of U. Clearly U has rank s; so does V, since  $R(B) \subseteq R(V)$ . Rank  $(V) = \dim R(V) \le s$ , the number of rows in V. Our plan is to exhibit an *invertible*  $(r+s) \times (r+s)$  submatrix of A+B, which will mean that rank  $(A + B) \ge \operatorname{rank}(A) + \operatorname{rank}(B)$ , as required. To this end, partition U and V as  $U = \begin{pmatrix} U_r \\ U_p \end{pmatrix}$  and  $V = (V_r \ V_q)$ , where  $U_r$  is  $r \times s$  and  $V_r$  is  $s \times r$ . We claim that  $U_p$  has independent columns. To see this, suppose  $U_p x = 0$  for some vector  $x \in F^s$ . Then  $Ux = \begin{pmatrix} U_r x \\ 0 \end{pmatrix}$  is in  $C(A) \cap C(B) = \{0\}$  since, by our special choice of A, C(A) consists of the vectors in  $F^n$  all of whose entries after the first r are 0. Thus  $Ux = \{0\}$ , and since U has independent columns, it follows that x=0. This shows that the columns of  $U_p$  are independent; in other words, rank  $(U_p) = s$ . Hence  $U_p$  has an invertible  $s \times s$  submatrix  $U_s$  whose rows are indexed by a subset J of  $\{r+1,\ldots,r+p=m\}$ . Similarly, by considering transposes and using the row space hypothesis, the same argument shows that  $V_q$  has an invertible  $s \times s$ submatrix  $V_s$  whose *columns* are indexed by a subset K of  $\{r+1,\ldots,r+q=n\}$ . Now, the  $(r+s) \times (r+s)$  submatrix of B with rows indexed by  $\{1,2,\ldots,r\} \cup J$ and columns indexed by  $\{1, 2, \dots, r\} \cup K$  is  $\begin{pmatrix} U_r \\ U_s \end{pmatrix} (V_r V_s) = \begin{pmatrix} U_r V_r & U_r V_s \\ U_s V_r & U_s V_s \end{pmatrix}$ , so the corresponding submatrix of A + B is  $\begin{pmatrix} I_r + U_r V_r & U_r V_s \\ U_s V_r & U_s V_s \end{pmatrix}$ . Subtracting  $U_r U_s^{-1}$ 

times the second block row from the first (an operation that does not affect the determinant) gives the matrix  $\begin{pmatrix} I_r & 0 \\ U_s V_r & U_s V_s \end{pmatrix}$  with determinant  $\det(I_r) \det(U_s V_s) = \det(U_s) \det(V_s) \neq 0$ .

We have exhibited an invertible  $(r + s) \times (r + s)$  submatrix of A + B. Hence rank (A + B) = rank (A) + rank (B), and this proves the theorem.

## References

- 1. R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
- 2. H. Liebeck, A proof of the equality of column and row rank of a matrix, *American Mathematical Monthly* 73 (1966) 1114.
- 3. G. Mackiw, A note on the equality of column and row rank of a matrix, *Mathematics Magazine* 68 (1995) 285–286.
- 4. V. V. Prasolov, *Problems and Theorems in Linear Algebra*, American Mathematical Society, Providence, RI, 1994, p. 50, Problem 8.5.



## **Proof of a Common Limit**



From the figure,  $\ln x < \frac{1}{2}x$ . Thus,  $\lim_{x \to \infty} \frac{x}{e^x} = \lim_{x \to \infty} \frac{1}{e^{x - \ln x}} = 0$ .

—Alan H. Stein and Dennis McGavran University of Connecticut