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Computers and Advanced Mathematics in the Calculus Classroom
Kurt Cogswell (ma19@sdsumus.sdstate.edu), South Dakota State University, Brook-
ings, SD 57006

As calculus instructors, we often work with classes consisting largely of non-
mathematics majors. As a result, we spend a great deal of time and effort construct-
ing examples and projects that demonstrate the uses of calculus in fields other than
mathematics. This is great, and as an ex-physicist I'm all for it. However, now I'm a
mathematician, so I'd like to propose an alternative: why not develop projects based
on advanced mathematics of the sort typically seen in graduate courses?

I can think of at least one good answer to that question: “I have enough trouble
getting my students to use the chain rule, and now you want them to prove the
Riemann hypothesis?” Well no, not really. However, my experience at the end of
the first year of a typical calculus sequence is proof that the idea can work, that
students can enjoy it and be motivated by it to study mathematics, and that they can
gain significant understanding of topics in calculus in the process. The trick to
making it work is to replace the years of “theorem-proof’ experience usually
prerequisite to studying advanced mathematics with a computer-aided, investigative
approach.

As an example, let me briefly describe the final project I assigned my second-
semester calculus students in the spring of 1997. As is typical in most calculus
sequences, we had covered (among other topics) Riemann integration, the average
value of a function, and the limiting behavior of infinite sequences and series. As is
also typical, the level of understanding of these topics varied. Looking for a way to
inspire some thoughtful consideration to enhance understanding (as opposed to
computational facility), T created a graphically-oriented, interactive Mathematica
notebook which allowed students to investigate the properties of ergodic averages
of functions along sequences in the unit interval [0, 1] . (T would be glad to e-mail a
copy of this notebook to anyone requesting it.)

Such averages take the form A4,(f,S)= %Z,’e’ﬂﬂx,@), where S=(x,);_, is an

infinite sequence of numbers from [0, 1] and f is a real-valued function. Typically,
ergodic theorists ask “Does lim,, , ,, 4,(f, S) exist?” and “If so, what is it?” For many
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choices of f and S, the answers are “Yes” and “[; f{x)dx”. This is the content of
Birkhoff’s Ergodic Theorem, which forms the foundation of the field of ergodic
theory.

The historical roots of ergodic theory go back to the great physicist Ludwig
Boltzmann (1844—1906), whose Ergodic Hypothesis concerned equilibrium states of
physical systems. Let’s consider a physical system in equilibrium with its surround-
ings that is evolving with time. To be specific, let it be a closed container full of gas
in thermal equilibrium. Suppose that we insert a small pressure-measuring probe
through the wall of the container. Given the wide variety of states available to the
system, at one instant a large number of gas molecules could be striking the probe,
resulting in a large pressure, while a very short time later the number could be
small, resulting in a small pressure. So, we might expect to measure large, rapid
fluctuations in pressure, and to get entirely different results if we repeated the
experiment tomorrow. However, for gases in equilibrium we know that pressure
measurements are quite steady and repeatable. Boltzmann put forth two ideas to
explain this. First, he made the reasonable assumption that the time needed to take
the measurement is long relative to the fluctuations in the state of the gas, so that
what we actually measure is a time average of pressures. This explains why
pressure is steady. To explain the repeatability of measurements, he postulated
Boltzmann’s ergodic hypothesis, which says (very roughly) that over a long period
of time, the system will pass through every possible state, and will pass through
each state equally often.

To see how this hypothesis explains the repeatability of measurements, and what
it has to do with Birkhoff’s Ergodic Theorem, let’s consider a much simpler system.
Suppose the states of our system can be labeled by the real numbers in [0, 1]. As
time passes, the evolution of the state of our system corresponds to a time variation
of the label attached to the state. We are interested in measuring some property of
our system that takes on a definite value in each different state of the system. Let
J{x) be the measurement on state x. We make a sequence of measurements at
discrete times; at time %, we label the state of the system x,. Then the long-time

. L1 1 .
average of this sequence of measurements is lim,,_,,—%¢_; f(x,). Now bring
n

Boltzmann’s hypothesis into the picture. As 7 — o, almost all sequences (x,)]_;
come closer and closer to uniformly filling the entire unit interval. The long-time
average then looks like a limit of Riemann sums, with limiting value [y /(x) dx.
Since our interval is one unit long, this is the average value of f, which can be
interpreted as the average value of the measurement over all possible states of the
system. Thus, any measurement performed on a sufficiently long time scale relative
to the fluctuations in our system will essentially be an average over all possible
states of the system. This not only explains the repeatability of measurements on
equilibrium systems, but also leads to the statement of Birkhoff’s Ergodic Theorem

as we saw it earlier, 1imn%%zz=1 f(x,) = [ /{x) dx. Thus, we see that Birkhoff's

Ergodic Theorem is essentially a restatement of Boltzmann’s ergodic hypothesis,
which became a theorem when Birkhoff proved it.

The proper study of the questions of ergodic theory typically involves a healthy
dose of measure theory and functional analysis. Thinking about their answers can
lead calculus students to insights into all of the calculus topics mentioned above, as
well as such areas as chaotic dynamical systems and Monte Carlo integration.

The Mathematica notebook the students used allowed them to specify a function
f and sequence S =(x,)5_,, and then watch a graph of the sequences S = (x,)_;
and (A,(f, SHY_, unfold for increasing N. This provided a reasonable indication of
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the existence or non-existence of the limits of the sequences. The students worked
in groups of two or three, using the notebook to investigate the answers to several
questions:

e How do the properties of f and S relate to the existence of lim, , ., 4,(f, S)?

e What can you say about the value of the limit? (Here, experimentation with
familiar functions led most students to independently discover Birkhoff’s
Ergodic Theorem, and gain insights into Riemann integration and the average
value of a function.)

e What happens if S is a uniformly distributed sequence of random numbers
on [0,1F? (Investigation here leads to discovery of the principle of Monte
Carlo integration.)

e Suppose S is a sequence of values generated by iteration of the logistic map;
ie, x4, = Ax,(1— x,), with x,€[0,1] specified, and A€[0,4] an ad-
justable parameter. How does lim, _,,A4,(f,S) change with A As A in-
creases, S becomes chaotic, so students can gain insight into the conse-
quences of chaotic behavior, and the robustness of system behavior when
parameters vary.

Typically, part of a student’s investigation procedure might consist of graphically
studying limn_,m%Z,’;:lj(xk) in the cases flx)=x", n=0,1,2,3,.... In these

cases, the limits are discovered to be 1, 3, 3, %, ... (See the illustration below for the

80 100

First output screen when f(x) = 3.

case n =3). Most students will recognize these values as being [, x” dx. Further
experimentation with other functions leads to the independent discovery of the
statement of Birkhoff’s Theorem.

Assigning this project was an experiment and, as it turned out, a very successful
one. It led to excellent, thoughtful consultations with students and among group
members as they worked. With a minimum of hints and nudging on my part, each
group produced a written report of their results. The sophistication of their conclu-
sions surprised me, and the enthusiasm with which they discussed them was
invigorating. 1 think the project may have even caused a couple of potential
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engineers to see the light and consider mathematics as a career, though only time
will tell.

Clearly, this experimental approach to investigating advanced concepts and
gaining insights into basic concepts has much to recommend it. I can see the same
idea being applied in several other freshman and sophomore level courses. For
example, in a linear algebra course it could lead students into an experimental
investigation of the concepts of functional analysis, or in a multivariable calculus
course it could lead to a computer-aided differential geometry project. Such projects
could be implemented using any of the existing popular mathematical software
packages, or even developed from scratch with computer language compilers. Even
the development of such a project could become a project for an advanced student
with sufficient computer expertise. I hope others will try these ideas; and if they do,
I trust they will experience as much success as I did.

A Natural Proof of the Chain Rule
Stephen Kenton (kenton@ecsuc.ctstateu.edu), Eastern Conn. State Univ., Williman-
tic, CT 06226

The first three editions of Hardy’s A Course in Pure Mathematics [4] contain a
“natural” proof of the familiar Chain Rule for differentiating the composition of two
real-valued functions of a real variable. Unfortunately, the proof was wrong!

Chain Rule. Let 7,/ be open intervals of real numbers, f:1—], g:J— R, f
differentiable at ¢, g differentiable at f(c). Then go f is differentiable at ¢, and
(g o)=g(f(D:f'(c).

The undergraduate real analysis (or advanced calculus) course allows students to
experience the striking power of creating and proving significant results by making
natural choices and educated guesses, and then proving these results using a few
basic techniques. For the Chain Rule proof, one begins with the definition of a
derivative, a familiar technique is applied to transform the problem so the hypothe-
ses can be used, and then the proof follows easily. But then a subtle flaw is
revealed, the attempt abandoned, and a special technique is introduced; e.g., [2—7].
Often, the motivational step is skipped and the unmotivated proof is directly
presented; e.g., [1], [8]. In this note, we show how to prove the Chain Rule by
following the original path, using techniques familiar to students from previous
work.

Natural “proof” of the Chain Rule. Using the definition of the derivative of a
composite function,

(5170 = 1SS 80D 0
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