b=0 (or a=0): if f,, <0 (or equivalently f, <0) at (x,,y,), then we have a
maximum, if either (and hence both) is positive, then we have a minimum.

The quantity D=f2 —f,.f,, tells even more than that. If D >0 then the
discriminant is positive, meaning that g”(0) can be either positive or negative,
depending on a and b. This says that in some directions there is a minimum, and
in others a maximum, so that we have a saddle point.

If D=0, then either g”"(0)=0, in which case the second derivative test is
inconclusive in all directions (a, b) or else g”(0) is semidefinite, e.g. g”(0) > 0 and
there is exactly one direction in which the second derivative test is inconclusive.
Thus, if D =0, then we cannot tell without further analysis if (x,, y,) is a saddle
point or an extremum of some type (though if g”(0) > 0 as mentioned above, then
(xg, ¥o) cannot be a relative maximum).

Notice that we need only the chain rule for multivariate functions to obtain this
formula, so its proof need not be relegated to ‘advanced calculus’ courses.
Compare and contrast this with the somewhat less elementary treatments in the
references.

One can also use this as a motivation for the study of quadratic forms,
diagonalization, eigenvalues, positive definiteness, etc.
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Physical Demonstrations in the Calculus Classroom
Tom Farmer & Fred Gass, Miami University, Oxford, OH 45056.

The tremendous success of mathematical modeling is an article of faith among
scientists. Indeed, in his well-known paper “The Unreasonable Effectiveness of
Mathematics in the Natural Sciences,” Eugene P. Wigner expresses a feeling akin
to awe at the ability of modern mathematical science to predict as well as to
describe empirical events. As calculus instructors wishing to convey a sense of this
remarkable interplay between our subject and the “real world,” we began looking
for ways to elicit more student interest and involvement in our treatment of
applications.

The idea we eventually decided to pursue occurred the day when one of us used
a glass of water with a pencil standing in it to illustrate Snell’s law after deriving it
from Fermat’s principle. The novelty of this simple physical example linked to
calculus drew a favorable response in class and suggested that more ambitious
demonstrations might be even more satisfying. The main purpose was to make
discussions more memorable rather than to pursue an application area in greater
depth; consequently we looked for activities that would involve minimal equipment
and class time while inviting hands-on student participation.

The most effective demonstration we have used in calculus classes involves what
is known as Torricelli’s law, which concerns the rate at which a fluid drains out of a
hole in a container. In our experiment, the container is a cylinder with vertical axis
and in this case Torricelli’s law states that the time rate of change of volume V of
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water in the draining container is proportional to the square root of the water’s
depth 4. Since the volume of a cylinder is proportional to height, the law reduces
to h'(t)=kvh.

We have used this demonstration at the point in the Calculus I course when
antiderivatives have been introduced and one can solve separable differential
equations. The class period begins with a discussion of the question: if water is
draining out of a vertical cylindrical tank, will the volume of water in the tank
decrease at a constant rate or will the rate vary with time? The class surely will
agree that we expect the rate to decrease with time because experience tells us
that the stream of water coming out of the hole will be greatest at first when the
depth is great and will be reduced to a dribble when the depth is close to zero.
Thus, we expect that the linear model #'(z) = k will not very accurately describe
this experiment. We intend to compare the linear model with the model given by
Torricelli’s law.

The following information is then presented to the students:

Problem. A small hole is drilled in the side of a cylindrical container and the
height of the water level (above the hole) goes from 10 cm down to 3 cm in 68
seconds. Estimate the height at intermediate times.

The linear model:

dh

— =k, h(0) =10, h(68) =3

dt

can be seen to have approximate solution A(t) = —0.103¢ + 10.
The Torricelli model:

dh
= kvh , h(0) = 10, h(68) =3
has approximate solution /(t) = 0.00044¢% + (—0.133)¢ + 10.

The table below gives the values of /& predicted by each of these models for
various intermediate times. We will fill in the column of observed values when we
perform the experiment.

time linear Torricelli observed

t h h h

0 10.0 10.0

10 9.0 8.7

20 7.9 7.5

30 6.9 6.4

40 59 5.4

50 4.8 4.4

60 3.8 3.6

68 3.0 3.0

The equipment for this demonstration is easily obtained at little or no cost. We
prepare a two-liter clear plastic soft drink bottle, whose midsection is essentially
cylindrical, by drilling a clean 4 millimeter hole near the bottom of the cylindrical
part. We also attach to the bottle a strip of masking tape with centimeters marked
on it and zero corresponding to the top of the hole. We bring this bottle to class
along with another bottle of water (as a water source), a laundry bucket (as a water
sink) and a board to span the bucket. We can probably always rely on a student to
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have a digital watch to keep time but, to be safe, we bring such a watch. In advance
of class time, we run through the process several times to establish the time
required to drain the cylinder; with our apparatus it consistently took 68 seconds
for the water depth above the hole to drop from 10 centimeters to 3 centimeters.
Given this, the problem is to predict what the depth will be at times 10, 20, 30, 40,
50, and 60 seconds.

A vital part of the demonstration is to have students participate. We have had
no difficulty in getting three volunteers to play all the roles. The timekeeper helps
out initially by pouring the water into the leaky bottle while the bottle keeper
covers the hole with a finger. Meanwhile, the recorder copies the table of
predicted values on the blackboard. As the experiment progresses, the time keeper
calls out ...8,9,10,...,18,19,20,... and at the appropriate times the bottle
keeper estimates out loud the depth reading which can be done with accuracy
within a tenth of a centimeter. This person should be cautioned not to look at the
predicted values in order to avoid being influenced by them. As the depths are
called out the recorder records them on the blackboard. Our experience in trying
this in three different classes was that the experimental data were virtually
identical to the Torricelli predictions, making for an impressive and memorable
demonstration.

A second demonstration we have used involves less apparatus but one item that
must be made in advance: a thin “plate” shaped like the interior of a parabola
from the vertex back to a line perpendicular to the axis. The basic idea is to
determine from first principles, via integral calculus, just where the balance point
ought to be. The chance for people to test the result on a physical model gives a
“payoft” to the example.

We are still experimenting with ideas along the lines described above. Such
topics as Newton’s law of cooling, period of a pendulum, differentials for inverse
square laws, and spark tapes for velocity /acceleration seem promising, if one can
find the right mix of calculus and physical interaction in the classroom.

Acknowledgment. We would like to acknowledge the assistance of our colleague from physics, Paul
Scholten.

Rubberbanding and Holding Out
James C. Kirby, Tarleton State University, Stephenville, TX 76402

In discrete mathematics, one problem of interest is counting bit strings that have
some particular property. Two such problems deal with the number of ways that
zeros can appear together and the number of ways that they can be separated.
Specifically:

Problem 1. How many eight-bit strings with exactly two zeros are there in which
the two zeros appear together?

Problem 2. How many eight-bit strings with exactly two zeros are there in which
the two zeros do not appear together?

To solve the first problem, we “rubberband” the two zeros together and then
count the number of ways that six ones can be arranged with the zeros: C(7,1)
ways. To solve the second problem, we may use a complement approach. That is,
subtract the number of ways the zeros can appear together from the total number
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