and continuing in this fashion,

k

T =" e+ (r+i)g’
=0

for values of k from 0 up to where J,.1r = 0. Setting » = 1 and assuming k can be
chosen so that Ji1 = 0 (which makes k + 1 the day that the last candies are eaten),
we obtain

J k:+1J - A d £ i+1 d qk+2_q
= ]_ Nat = —_— g = — - .
0=4 k+1+i2=;( +1)q O+dq;q dq( =) )

It follows that the original number of candies must be given by

(k+1)g" 2 — (k+2)g* ! + 1
(¢—1)? '
If £ = 0 (so that J; = 0), this gives the trivial solution to the problem: Jy =
(¢>—2g+1)/(g—1)? = 1. On the other hand, if k > 0 (and Jx41 = 0), then we must

consider how equation (1) can yield an integer value for Jy. Note that ¢ = n/(n—1)
implies ¢ — 1 =1/(n — 1), so (1) becomes (after algebraic simplification)

Jo = (1)

k
Jo= (n—"—l) n(k+2 —n) + (n— 1)%. 2)
Since n» and n — 1 are relatively prime, the right-hand side of (2) is an integer only
when n = k + 2. Consequently, day k + 1 when the candy is finished is day n — 1,
and the original number of candies is (n — 1)2, as claimed. One can check that this
value for Jy does indeed lead to an integer sequence {J, }. In fact, it is easily proved
by induction that J, = (n —1)(n —r —1) forr=0,...,n— 1.
As an exercise, here is a related problem that can be solved by similar means:

On the rth day, a pool of I dollars is increased by r? and then reduced by s% (where
n = 100/s is an integer). Assume that the pool has an integer number of dollars and that .
on some future day the original amount I is restored. Show that I = (n — 1)*(2n — 1)
is the unique nontrivial solution under these conditions and that, in this case, 2(n — 1)
is the number of days required.

A Simple Solution of the Cubic

Dan Kalman (kalman@email.cas.american.edu), American University, Washington,
DC 20016

James White (mathwrig@gte.net), Mathwright Library, Marina, CA 93933

The quadratic formula for the general degree-two equation is one of the most familiar
equations in mathematics. Surely every college mathematics teacher can quote it and
derive it without effort. In contrast, the corresponding equation for the solution of
the general cubic is quite obscure. We are all aware that such a formula exists, but
it is an uncommon mathematician who can quote the result, let alone derive it from
first principles. Imagine our surprise, therefore, at discovering a simple algebraic
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derivation in the middle of looking for something else. Even more surprising, when
we reviewed the literature, we discovered (or rediscovered) other derivations that
are just as simple. Indeed, Oglesby [9] came up with a closely related approach 75
years ago. In retrospect, the solution of the cubic seems direct enough that we ought
to have been more familiar with it. We hope you will experience a similar reaction
as we share the derivation we found so serendipitously and sketch the more usual
approach.

Before proceeding, we should recall that an arbitrary cubic equation can be re-
duced to one of the form

2 +pr+q=0 1)

by a linear change of variable. So in what follows, we will consider only this kind
of cubic equation.
The derivation that we will present depends on the following identity:

(wa+b+c)(a+wb+c)(a+b+we) = (a+ b+ c)w — 3abew?. (2)

Here, a, b, and c are arbitrary complex constants and w = (—1 + z\/§) /2 is a cube
‘root of 1, so it satisfies a number of identities:

w3=1,
Wtw+1=0,
w+1=—w?

To verify (2), simply multiply out the left side, collect like monomials in a, b,
and ¢, and apply the identities for w listed above. Symmetry simplifies the process
considerably. Collecting together all terms involving a2b results in a coefficient of
w? + w + 1 = 0. By symmetry, the terms involving aZc,b?c, ..., also vanish. In
the expansion of the left-hand side of the identity, that leaves only terms involving
a®, b3, 3, and abc; when we consider the coefficients of these terms, (2) is easily
established.

We discovered identity (2) while working on a problem posed in Math Horizons:
Solve ¥/z +a+ vz + b+ ¥z + ¢ = 0. Although (2) turned out to be irrelevant for
that problem, the identity was so appealing that we were motivated to seek another
use for it. In the process, we stumbled on the following simple solution of the general
cubic equation.

To render the identity more recognizable, let’s replace a with z, which is to be
thought of as the variable of the cubic. That produces

(wz +b+c)(z+wb+c)(z +b+we) = (23 + b® + )w — 3zbaw?.
Factoring out w on the right and rerranging the remaining terms leads to

(wz+b+c)(z+wb+c)(z+ b+ we) = w(@® — 3zbew + b3 + ¢3). (3)

Now we can recognize that the right side is essentially the same as what appears
in (1), provided that the following relations hold:

—3bcw = D, (4)
¥+ =q (5)
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Given values of p and ¢, we need only determine a b and ¢ satisfying these relations,
whereupon (3) provides a factorization to linear factors. Fortunately, we can solve
for b and c in a straightforward way. Indeed, let’s just rewrite the original system of
equations in the following form:

33 P’
bt =9
B+t =q.

It is immediately apparent that b3 and ¢ are the roots of the quadratic equation
x? — gz — (p®/27) = 0, and they are given by

1/3
(q + /¢ + (4p3/27)>
2

At this point it is tempting to write

- ( 4+ /T AP ) "
2 ?

(6)

1/3
- (q -V + (4p3/27)>
c= .
2

However, that will not necessarily produce solutions consistent with equation (4).
In particular, when p and q are real, we obtain real values for b3 and c? just when
¢? + (4p®/27) > 0. In this case, simply extracting cube roots produces real values
of b and ¢, which evidently can satisfy (4) only in the exceptional case p = bc = 0.
Thus, a bit more care is required.

Using (6) as expressions for b3 and ¢, we have three complex cube roots among
which to choose b and c. Clearly, (5) will be satisfied no matter how we choose
these cube roots. To satisfy (4) as well, we simply choose any of the three complex
cube roots for b and then define ¢ as —p/(3wb).

To complete the solution of the cubic, we note that the solutions to (1) must also
be roots of

(wr+b+c)(z+wb+c)(z+b+we)=0.

By inspection, the solutions are

x:_b:C, z = —(wb+c), = —(b+we).

This result is closely related to, but slightly different from the standard solution
to the cubic that has been handed down with little if any modification since it was
published by Cardano in 1545. Although it was originally derived by a different
method, Cardano’s solution can be formulated in terms of the following identity:

(a+b+c)(a+wb+w?e)(a+ w?b+we) = a® + b3 + ¢ — 3abe. (7)

This identity has appeared in earlier papers [6, 9] on the solution of cubic equations.
It is very similar to (2) and can be derived from (2) by replacing a with a/w. From (7),
virtually the same steps presented above lead to the traditional form of Cardano’s
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solution to the cubic. The symmetry of (2) may make its verification somewhat.
simpler than the verification of (7). Otherwise, either identity provides a simple
approach to solving the cubic.

Here is a streamlined version of the Cardano solution, which is particularly simple
and memorable. Following the presentation in [10], begin with the cubic in the
form z® = px + q and replace x with b + ¢. That leads directly to the equation
3bcz + b3 + ¢ = px + q. Now match the coefficients of x; that is, make 3bc = p and
b® + ¢3 = ¢. These conditions are virtually identical to those used earlier, and they
allow us to find b and ¢ in terms of p and ¢. From this point on, the derivation is
essentially the same as what was presented before.

The literature on solving the cubic is large; for representative samples, see [3,
4, 9, 11]. Besides the presentation in [10] previously cited, a recently published
version is in [5]. A translation of Cardano’s solution appears in [2], and the history
of Cardano’s publication and his dispute with Tartaglia [1, 8] is quite interesting.
Kleiner [7] provides a nice discussion of the role of the solution of the cubic in the
development of complex numbers.
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MATH and Other Four-Letter Words
Marc D. Sanders (sanders@dickinson.edu) and Barry A. Tesman (tesman@dickinson.
edu), Dickinson College, Carlisle, PA 17013

Once parametric equations have been introduced in a calculus course, and after the
students have graphed a few examples and seen the usual methods for parametrizing
line segments and circular arcs, then the class is ready for this “spelling” lab. Working
with the letters of the alphabet is an amusing and engaging way for students to
become confident about writing parametric equations and plotting parametric curves.
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